A new study suggests that reductive stress can cause heart diseases. It has been found that excessive levels of one antioxidant—reduced glutathione—adds to the disease.
A new study suggests that reductive stress can cause heart diseases. It has been found that excessive levels of one antioxidant—reduced glutathione—adds to the disease.
Antioxidants are regarded as an significant guard against heart disease Ivor J. Benjamin, M.D., Christi T. Smith Chair of Cardiovascular Research, division chief of cardiology at the U School of Medicine’s study challenges the earlier ideas about oxidative stress. This new study will generate a new class of drugs to treat or even prevent heart disease.The protein alpha B-Crystallin, termed a molecular chaperone, normally helps long strips of other proteins fold inside cells. When it works properly, the cell produces the correct amount of reduced glutathione, which is healthy for the body.
Unfortunately, when the gene that makes alpha B-Crystallin is mutated in humans, the protein unfolds improperly into aggregrates, the hallmark of the condition in different organs, including the heart. When that happens, reduced glutathione is produced in such excessive levels that it harms the heart, Benjamin said. The resulting condition is called reductive stress.
In a study of laboratory mice with failing hearts caused by mutant alpha B-Crystallin, Benjamin and several U of U colleagues found increased activity of the biochemical pathway leading to high levels of reduced glutathione in the animals.
Glutathione, one of the body’s most powerful antioxidants, is regulated at multiple steps principally by the G6PD enzyme. To establish the connection between reduced glutathione and heart failure, Benjamin mated mutant alpha B-Crystallin mice that carried too much G6PD with mice that had far lower levels. The resulting offspring had normal levels of reduced glutathione and did not develop heart failure.
“Lowering the level of reduced glutathione dramatically changed the survival of these mice,” Benjamin said. “Basically, we prevented them from getting heart failure.”
Advertisement
Until now, reductive stress has not been looked at in the context of disease. “This is a case of too much of a good thing,” Benjamin said. “Our findings indicate reductive stress warrants a more thorough investigation.”
Advertisement
“This field of medicine has not appreciated reductive stress and its influence on disease,” he said. “This is about balance needed in the environment of our cells, and it can have profound consequences on the treatments of heart disease and other serious disorders.”
Source-Eurekalert
BIN/J