A small, portable device that will help in virus detection by trapping and concentrating viruses in an array of carbon nanotubes, has been discovered.
A new tool that uses a forest-like array of vertically-aligned carbon nanotubes has been developed. This can be used to selectively trap viruses by their size can increase the detection threshold for viruses and speed the process of identifying newly-emerging viruses.
‘The new technology enrich viruses by at least one hundred times and also removes host and environmental contaminants, and enables direct virus identification.’
The research, by an interdisciplinary team of scientists at Penn State, is published in the journal Science Advances.Viruses such as influenza, HIV/AIDS, Ebola, and Zika, can cause sudden, unpredictable outbreaks that lead to severe public-health crises. Currently available techniques for isolating and identifying the viruses that cause these outbreaks are slow, expensive, and use equipment and reagents that can be expensive, bulky, and require specialized storage.
Many recent outbreaks have been caused by newly emerging viruses for which there are no established ways to selectively isolate them for identification and characterization.
"Detecting viruses early in an infection before symptoms appear, or from field samples, is difficult because the concentration of the viruses could be very low -- often below the threshold of current detection methods," said Mauricio Terrones, professor of physics, chemistry, and materials science and engineering at Penn State, and one of the corresponding authors of the research.
"Early detection is important because a virus can begin to spread before we have the ability to detect it. The device we have developed allows us to selectively trap and concentrate viruses by their size -- smaller than human cells and bacteria, but larger than most proteins and other macromolecules -- in incredibly dilute samples. It further increases our ability to detect small amounts of a virus by more than a hundred times."he added.
Advertisement
Viruses get trapped and build up to usable concentrations within the forest of nanotubes, while other smaller particles pass through and are eliminated. The concentrated virus captured in the device can then be put through a panel of tests to identify it, including molecular diagnosis by polymerase chain reaction (PCR), immunological methods, virus isolation, and genome sequencing.
Advertisement
"Most lethal viral outbreaks in the past two decades were caused by newly emerging viruses. This size-based virus-enrichment technology can be particularly powerful in identification of emerging viruses and discovery of new viruses that do not have antibodies and sequence information available," said Si-Yang Zheng, associate professor of biomedical engineering at Penn State, the other corresponding author on the paper.
The researchers validated the ability of their newly developed device to capture viruses from dilute samples using known concentrations of previously identified viruses as well as field samples of emerging and unknown viruses. "We developed a portable platform to enrich and isolate viruses based on their physical sizes," said Yin-Ting Yeh, a postdoctoral researcher at Penn State and first author of the paper. "This tunable size-based approach provides rapid virus enrichment directly from field samples without the use of antibodies. The device enables early detection of emerging diseases and potentially allows for vaccine development much sooner in the process of an outbreak."
Source-Medindia