AI Smartphone App Ensures Precision in Ear Infection Diagnoses
Scientists have created a novel mobile app utilizing artificial intelligence (AI) for precise diagnosis of ear infections (acute otitis media, AOM), potentially reducing unnecessary antibiotic use in young children ().
What is Acute Otitis Media
AOM is one of the most common childhood infections for which antibiotics are prescribed but can be difficult to discern from other ear conditions without intensive training. The new AI tool, which makes a diagnosis by assessing a short video of the ear drum captured by an otoscope connected to a cellphone camera, offers a simple and effective solution that could be more accurate than trained clinicians.
"Acute otitis media is often incorrectly diagnosed," said senior author Alejandro Hoberman, M.D., professor of pediatrics and director of the Division of General Academic Pediatrics at Pitt's School of Medicine and president of UPMC Children's Community Pediatrics. "Underdiagnosis results in inadequate care and overdiagnosis results in unnecessary antibiotic treatment, which can compromise the effectiveness of currently available antibiotics."
‘The novel AI tool holds the potential to revolutionize primary healthcare by assisting clinicians in accurately diagnosing ear infections and making informed treatment decisions. #AI #earinfections #worldhearingday’
According to Hoberman, about 70% of children have an ear infection before their first birthday. Although this condition is common, accurate diagnosis of AOM requires a trained eye to detect subtle visual findings gained from a brief view of the ear drum on a wriggly baby. AOM is often confused with otitis media with effusion, or fluid behind the ear, a condition that generally does not involve bacteria and does not benefit from antimicrobial treatment.
Did You Know?
The new artificial intelligence tool ensures accurate diagnosis and guides appropriate treatment for ear infections.
"The ear drum, or tympanic membrane, is a thin, flat piece of tissue that stretches across the ear canal," said Hoberman. "In AOM, the ear drum bulges like a bagel, leaving a central area of depression that resembles a bagel hole. In contrast, in children with otitis media with effusion, no bulging of the tympanic membrane is present."
The researchers used 921 videos from the training library to teach two different AI models to detect AOM by looking at features of the tympanic membrane, including shape, position, color and translucency. Then they used the remaining 230 videos to test how the models performed.
Both models were highly accurate, producing sensitivity and specificity values of greater than 93%, meaning that they had low rates of false negatives and false positives. According to Hoberman, previous studies of clinicians have reported diagnostic accuracy of AOM ranging from 30% to 84%, depending on type of health care provider, level of training and age of the children being examined.
"These findings suggest that our tool is more accurate than many clinicians," said Hoberman.
"Another benefit of our tool is that the videos we capture can be stored in a patient's medical record and shared with other providers," said Hoberman. "We can also show parents and trainees - medical students and residents - what we see and explain why we are or are not making a diagnosis of ear infection. It is important as a teaching tool and for reassuring parents that their child is receiving appropriate treatment."
Hoberman hopes that their technology could soon be implemented widely across health care provider offices to enhance accurate diagnosis of AOM and support treatment decisions.
Other authors on the study were Nader Shaikh, M.D., Shannon Conway, Timothy Shope, M.D., Mary Ann Haralam, C.R.N.P., Catherine Campese, C.R.N.P., and Matthew Lee, all of UPMC and the University of Pittsburgh; Jelena Kovačević, Ph.D., of New York University; Filipe Condessa, Ph.D., of Bosch Center for Artificial Intelligence; and Tomas Larsson, M.Sc, and Zafer Cavdar, both of Dcipher Analytics.
Reference:
- Development and validation of an automated classifier to diagnose acute otitis media in children - (https:jamanetwork.com/journals/jamapediatrics/article-abstract/2815513)
Source: Eurekalert