Know How Plant Biomass can be Converted into Biofuels More Efficiently
Plant genetic advance could lead to more efficient conversion of plant biomass to biofuels, reveals a new study.
Plant geneticists including Sam Hazen at the University of Massachusetts Amherst and Siobhan Brady at the University of California, Davis, have sorted out the gene regulatory networks that control cell wall thickening by the synthesis of the three polymers, cellulose, hemicellulose and lignin.
The authors stated that the most rigid of the polymers, lignin, represents "a major impediment" to extracting sugars from plant biomass that can be used to make biofuels.
Their genetic advance has been expected to "serve as a foundation for understanding the regulation of a complex, integral plant component" and as a map for how future researchers might manipulate the polymer-forming processes to improve the efficiency of biofuel production.
The three key components, found in plant tissues known as xylem, provide plants with mechanical strength and waterproof cells that transport water. Working in the model plant Arabidopsis thaliana, Hazen, Brady and colleagues explored how a large number of interconnected transcription factors regulate xylem and cell wall thickening.
They also found that each cell-wall gene in the xylem regulatory network was bound by an average of five different transcription factors from 35 distinct families of regulatory proteins. Further, many of the transcription factors form a surprisingly large number of feed-forward loops that co-regulate target genes.
In other words, rather than a series of on-off switches that leads to an ultimate action like making cellulose, most of the proteins including regulators of cell cycle and differentiation bind directly to cellulose genes and to other transcription regulators. This gives plants a huge number of possible combinations for responding and adapting to environmental stress such as salt or drought, the authors point out.
While this study could identify interactive nodes, the techniques used were not able to let the authors determine exactly what types of feed forward loops are present in the xylem regulatory network. However, the work offers a framework for future research that should allow researchers to identify ways to manipulate this network and engineer energy crops for biofuel production.
Source: ANI