Long Short-Term Memory-based approaches could provide a better algorithm strategy for neuroprostheses that employ Brain-Machine Interfaces to restore movement in patients with severe neuromotor disabilities, found study.

‘Long Short-Term Memory-based approaches could provide a better algorithm strategy for neuroprostheses that employ Brain-Machine Interfaces to restore movement in patients with severe neuromotor disabilities.’

Although over the years many real-time neural decoding algorithms have been proposed for brain-machine interface (BMI) applications, recent advances in deep learning algorithms have improved the design of brain activity decoders involving recurrent artificial neural networks capable of decoding the activity of all neurons in real time. 




As Núria Armengol explains, "for this study, we developed an LSTM decoder to extract the kinematics of the movement of the activity of large populations of neurons (N = 134-402), sampled simultaneously from multiple cortical areas of micus rhesus while they performed motor tasks". The brain regions studied include primary motor areas and primary somatosensory cortical areas. The LSTM's capacity to retain information for extended periods of time enabled accurate decoding for tasks that required both movements and periods of immobility.
"Our LSTM algorithm significantly outperformed the Kalman filter (an analytical method that enables estimating unobservable state variables from observable variables) while the monkeys were performing different tasks on a treadmill (raising an arm, raising both arms or walking)", Armengol adds.
Notably, LSTM units exhibited a variety of well-known physiological features of cortical neuronal activity, such as directional tuning and neuronal dynamics during tasks. LSTM modelled several key physiological attributes of the cortical circuits involved in motor tasks.
Source-Eurekalert