Medindia
Browse this site with No Ads Register
Medindia » Cancer News

Tracking X-Rays Attacking Cancer Cells Makes Treatment Effective

by Dr. Jayashree Gopinath on January 6, 2023 at 11:22 PM
Listen to this News

Radiation used to treat half of all cancer patients can be measured during treatment for the first time with precise 3D imaging developed at the University of Michigan. The findings are published in Nature Biotechnology.


By capturing and amplifying tiny sound waves created when X-rays heat tissues in the body, medical professionals can map the radiation dose within the body, giving them new data to guide treatments in real-time.

Doctors Viewing the Interaction Between X-Rays and Cancer Cells

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high-energy waves and particles, usually X-rays. The radiation can kill cancer cells outright or damage them so that they can't spread.

‘Doctors can accurately direct the radiation toward cancerous cells and limit the exposure of adjacent tissues with real-time 3D imaging.’

These benefits are undermined by a lack of precision, as radiation treatment often kills and damages healthy cells in the areas surrounding a tumor. It can also raise the risk of developing new cancers.

With real-time 3D imaging, doctors can more accurately direct the radiation toward cancerous cells and limit the exposure of adjacent tissues. To do that, they simply need to listen.

When X-rays are absorbed by tissues in the body, they are turned into thermal energy. That heating causes the tissue to expand rapidly, and that expansion creates a sound wave.

The acoustic wave is weak and usually undetectable by typical ultrasound technology. U-M's new ionizing radiation acoustic imaging system detects the wave with an array of ultrasonic transducers positioned on the patient's side.

The signal is amplified and then transferred into an ultrasound device for image reconstruction. With the images in hand, doctors can alter the level or trajectory of radiation during the process to ensure safer and more effective treatments.

In the future, they could use imaging information to compensate for uncertainties that arise from positioning, organ motion, and anatomical variation during radiation therapy.

Another benefit is it can be easily added to current radiation therapy equipment without drastically changing the processes that clinicians are used to.

Therefore, this technology can be used to personalize and adapt each radiation treatment to assure normal tissues are kept to a safe dose and that the tumor receives the dose intended.

This would be especially beneficial in situations where the target is adjacent to radiation-sensitive organs such as the small bowel or stomach.



Source: Eurekalert

View Non AMP Site | Back to top ↑