Researchers have developed a novel approach to create stents with growth potential and a sufficient degree of plastic deformation.

‘Researchers have developed a novel approach to create stents with growth potential and a sufficient degree of plastic deformation.’

M.S. Cabrera, B. Sanders, O.J.G.M. Goor, A. Driessen-Mol, C.W.J. Oomens, and F.P.T. Baaijens, Eindhoven University of Technology, the Netherlands, coauthored the study entitled "Computationally Designed 3D Printed Self-Expandable Polymer Stents with Biodegradation Capacity for Minimally-Invasive Heart Valve Implantation: A Proof of Concept Study." 




To overcome the current challenges in designing bioabsorbable polymer stents with the necessary mechanical properties for use in minimally invasive procedures to implant tissue-engineered heart valves in young patients, researchers have developed a novel approach to create stents with growth potential and a sufficient degree of plastic deformation.
The rapid prototyping method they describe involves creating an in silico model of a conventional nitinol stent and then translating the computational simulation into prototype stents using 3D printing and a flexible copolyester elastomer. The authors evaluated the mechanical properties of the stents by subjecting them to crush and crimping tests, and performed accelerated degradation tests to assess their biodegradability.
Source-Eurekalert