3D printing technology is suited to address supply–demand imbalances caused by socio-economic trends and disruptions in supply chains. 3D printing has enabled product customization, complex designs and on-demand manufacturing using any decentralized 3D printing facility in the world by leveraging designs shared online.
3D printing has enabled the swift mobilization of the technology and a rapid response to emergencies such as the COVID-19 crisis. 3D printing has led to the broad spectrum applications in the fight against COVID-19 including the printing of personal protective equipment (PPE), medical and testing devices, personal accessories, visualization aids, and emergency dwellings. The prevalence of the highly infectious coronavirus disease, COVID-19, has caused massive health and socio-economic upheavals worldwide. Major slumps in industrial production due to stringent lockdown measures and export restrictions have led to severe logistical challenges and drastic disruptions to the global supply chains. Rising to the challenges and unprecedented demands, the 3D printing technology has demonstrated operational resilience with timely and innovative responses to help in the global supply efforts.
‘The versatility of 3D printing is suited to address a variety of needs for COVID-19 needs ranging from personal protection equipment to medical devices and isolation wards. This proves the widespread application of technology in addressing the worldwide disruptions in supply chains.’
Read More..
In an article published in Nature Reviews Materials, researchers from the Singapore University of Technology and Design (SUTD), Nanyang Technological University, Cedars-Sinai Medical Center and HP Inc examined how the digital versatility and quick prototyping of 3D printing has enabled the swift mobilization of the technology and a rapid response to emergencies in a closed loop economy.Read More..
The researchers explained how 3D printing has enabled product customization, complex designs and on-demand manufacturing using any decentralized 3D printing facility in the world by leveraging designs shared online. This has led to the broad spectrum of 3D printing applications in the fight against COVID-19 including the printing of personal protective equipment (PPE), medical and testing devices, personal accessories, visualization aids, and emergency dwellings.
For instance, due to severe shortages of ventilator machines, continuous positive airways pressure (CPAP) machines were used as substitutes for COVID-19 patients who require sub-intensive therapy. A 3D printable mask connector design, the Charlotte valve, was produced and it was specially designed to fit and connect Decathlon’s Easybreath snorkelling masks to CPAP machines.
3D printing also served as an alternative and more efficient manufacturing option to keep up with the demand for nasopharyngeal (NP) swabs. The 3D printed NP swabs were fabricated with complex tip structures for enhanced sample collection efficacy, hence eliminating the need to apply flocks at the tips. Separately, 3D printing has even been used to fabricate temporary emergency dwellings to isolate those under quarantine, relieving the overloaded medical infrastructures.
The article additionally discussed technological suitability, accountability of new approved designs, copyright infringements as well as regulations and guidelines that 3D print manufacturers need to abide by to ensure safe and effective performance of 3D-printed medical devices and translate the good intentions of individuals into meaningful contributions.
Advertisement
Source-Eurekalert