Medindia LOGIN REGISTER
Medindia

3D Treatment Revolutionizes Diabetes Treatment

by Colleen Fleiss on Oct 9 2022 11:36 PM
Listen to this article
0:00/0:00

Scaffold, a new bandage treatment proves cost effective in treating diabetic foot ulcers. The scaffolds prepared using 3D bioprinting slowly release antibiotics.

3D Treatment Revolutionizes Diabetes Treatment
Scaffold, a new bandage treatment proves cost effective in treating diabetic foot ulcers. The scaffolds prepared using 3D bioprinting slowly release antibiotics over a four-week period to effectively treat the wound.
Diabetes, a lifelong condition that causes a person’s blood sugar level to become unstable, is among the top ten causes of deaths worldwide.

How Diabetic Foot Ulcer is Treated

Diabetic foot ulcer (DFU), is a serious complication of diabetes, affecting approximately 25% of diabetic patients. When identified, over 50% are already infected and over 70% of cases result in lower limb amputation.

The treatment strategy required for the effective healing of DFU is a complex process that requires several combined therapeutic approaches. As a result, there is a significant clinical and economic burden associated in treating DFU. These treatments are often unsuccessful, which leads to lower-limb amputation.

Drug-Loaded Scaffolds Help Treat Diabetic Foot Ulcer

This new research demonstrates outcomes with significant implications for patient quality of life, as well as decreasing the costs and clinical burden in treating DFU.

Professor Dimitrios Lamprou, a Professor of Biofabrication and Advanced Manufacturing at Queen’s School of Pharmacy and corresponding author, explains: “These scaffolds are like windows that enable doctors to monitor the healing constantly. This avoids needing to remove them constantly, which can provoke infection and delay the healing process.

“The ‘frame’ has an antibiotic that helps to ‘kill’ the bacteria infection, and the ‘glass’ that can be prepared by collagen/sodium alginate can contain a growth factor to encourage cell growth. The scaffold has two molecular layers that both play an important role in healing the wound.”

Lead author Ms Katie Glover, from the Queen’s School of Pharmacy, concludes: “Using bioprinting technology, we have developed a scaffold with suitable mechanical properties to treat the wound, which can be easily modified to the size of the wound. This provides a low-cost alternative to current DFU treatments, which could revolutionize DFU treatment, improving patient outcomes while reducing the economic burden caused by rapidly increasing patient demand as the number of people with diabetes continues to increase every year.”

Source-Eurekalert


Advertisement

Home

Consult

e-Book

Articles

News

Calculators

Drugs

Directories

Education