Engineers have developed a laboratory filtration system that uses a simple water purification technique and can eliminate 100 percent of the microbes
Engineers have developed a laboratory filtration system that uses a simple water purification technique and can eliminate 100 percent of the microbes in New Orleans water samples left from Hurricane Katrina.
The technique makes use of specialized resins, copper and hydrogen peroxide to purify tainted water.National Science Foundation-funded researchers Vishal Shah and Shreya Shah of Dowling College in Long Island, New York, collaborated with Boris Dzikovski of Cornell University and Jose Pinto of New York's Polytechnic University in Brooklyn to develop the technique. They will publish their findings in Environmental Pollution.
The system--safer, cheaper and simpler to use than many other methods--breaks down a range of toxic chemicals. While the method cleans the water, it doesn't yet make the water drinkable. However, the method may eventually prove critical for limiting the spread of disease at disaster sites around the world.
"After the disaster of Hurricane Katrina, scientists have had their backs against the wall trying to develop safeguards," said Shah. "No one knows when a similar situation may arise. We need to develop a treatment for decontaminating flood water before it either comes in contact with humans or is pumped into natural reservoirs."
The treatment system that the researchers are developing is simple: a polymer sheet of resins containing copper is immersed in the contaminated flood water. The addition of hydrogen peroxide generates free radicals on the polymer. The free radicals remain bound to the sheet, where they come in contact with bacteria and kill them.
The researchers are working to lower the amount of copper in the treated water end product and improving the system's impact on chemical toxins. Shah believes it could be ready for emergency use within five to seven years.
Advertisement
Free radicals are atoms or molecules that have an extra electron in dire need of a partner (they obtain the partner by stripping it from a nearby atom, damaging the "victim" in the process). In large quantities, the radicals can destroy toxic chemicals and even bombard bacteria to death or irreparably damage a microorganism's cell membrane.
Advertisement
Source-Eurekalert
SRI