Researchers at the Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed) have made a discovery in the immune system molecules that shield against infections
Researchers at the Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed) have made a discovery in the immune system molecules that shield against infections. Today infections are becoming increasing resistant to antibiotics. These findings give new hope for conquering the risk of antibiotic resistance. The report will be in the September issue of Nature Reviews Microbiology.
Drs. Michael R. Yeaman and Nannette Y. Yount present evidence that small proteins in the immune systems of humans and all kingdoms of life share fundamental structural and functional characteristics that enable these molecules to inhibit or kill microbial pathogens – even as these pathogens evolve to resist conventional antibiotics."These findings reveal that nature uses a recurring molecular strategy to defend against infection," said Dr. Yeaman. "A clearer understanding of this strategy provides new opportunities to develop innovative anti-infective therapies to better prevent or treat life-threatening infections that resist current antibiotics."
Most modern antibiotics work by targeting specific structures or functions in microbial pathogens. If the targets change due to mutation, pathogens can quickly become resistant to the antibiotics. In contrast, immune system molecules have retained the ability to fight infection – even as microbes evolve.
"While human ingenuity has thus far created antibiotics that pathogens seem to resist after just a few years, nature has created molecules in our immune systems that retain the ability to defend against infection even after millions of years of evolution," said Dr. Yeaman. "We have a lot to learn from nature."
The September article sheds new light on the molecular basis for the antimicrobial capabilities of these molecules. Drs. Yeaman and Yount report that a structure they discovered in these molecules in 2004 – known as the y core – allows for "hypermutability," or unusually high rates of mutation or modification at specific sites within these molecules.
To do so, the y core structure often contains a "b bulge" motif – a region that affords structural variations otherwise prohibited in protein biochemistry.
Advertisement
Source-Eurekalert
BIN/C