Decellularized muscle grafts were found to support skeletal muscle regeneration to treat tissue loss, said study.
Study reported less scar tissue formation and more new neuromuscular receptors using a decellularized muscle matrix than either a rat muscle autograft or collagen plugs to repair large muscle defects. The findings of the study are published in Tissue Engineering, Part A, peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineeringwebsite until June 4, 2018. The article entitled "Decellularized Muscle Supports New Muscle Fibers and Improves Function Following Volumetric Injury" was coauthored by Barbara Boyan, PhD, Virginia Commonwealth University (VCU), Richmond and Georgia Institute of Technology, Atlanta and colleagues from VCU and Musculoskeletal Transplant. Foundation, Edison, NJ and University of Texas Health Science Center at San Antonio.
‘Compared to an autologous muscle graft, a decellularized muscle matrix used to repair medium- and large-sized defects in rats resulted in enhanced muscle function recovery, muscle regeneration, and the formation of new neuromuscular junctions.’
"This article demonstrated the potential of decellularized tissue grafts for use as scaffolds in tissue engineering applications," says Tissue Engineering Co-Editor-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX.
Source-Eurekalert