Researchers from Charité - Universitätsmedizin Berlin and the German Cancer Consortium (DKTK) have successfully solved a longstanding problem in the diagnosis of head and neck cancers.
Artificial intelligence (AI) helps to develop a new classification method that identifies the origin of cancerous tissue depending on chemical DNA changes. Results from this research have been published in Science Translational Medicine. Every year, more than 17,000 people in Germany are diagnosed with head and neck cancers. These include cancers of the oral cavity, larynx and nose, but can also affect other areas of the head and neck. Some head and neck cancer patients will also develop lung cancer.
‘Artificial intelligence improves the diagnosis of deadly head and neck cancers by distinguishing primary and metastatic tumors. It plays a vital role not just in our daily lives, but in natural sciences and medical research.’
Read More..
"In the large majority of cases, it is impossible to determine whether these represent pulmonary metastases of the patient's head and neck cancer or a second primary cancer, i.e. primary lung cancer," explains Prof. Dr. Frederick Klauschen of Charité's Institute of Pathology, who co-led the study alongside Prof. Dr. David Capper of Charité's Department of Neuropathology. Read More..
"This distinction is hugely important in the treatment of people affected by these cancers," emphasizes Prof. Klauschen, adding: "While surgery may provide a cure in patients with localized lung cancers, patients with metastatic head and neck cancers fare significantly worse in terms of survival and will require treatments such as chemoradiotherapy."
When trying to distinguish between metastases and a second primary tumor, pathologists will usually use established techniques such as analyzing the cancer's microstructure and detecting characteristic proteins in the tissue. However, due to the marked similarities between head and neck cancers and lung cancers in this regard, these tests are usually inconclusive.
"In order to solve this problem, we tested tissue samples for a specific chemical alteration known as DNA methylation," explains Prof. Capper who, like Prof. Klauschen, is a Scientific Member of the DKTK in Berlin. He adds: "We know from earlier studies that DNA methylation patterns in cancer cells are highly dependent on the organ in which the cancer originated."
Working with Prof. Dr. Klaus-Robert Müller, Professor for Machine Learning at TU Berlin, the research group employed artificial intelligence-based methods to render this information useful in practice. The researchers used DNA methylation data from several hundred head and neck and lung cancers in order to train a deep neural network to distinguish between the two types of cancer.
Advertisement
He continues: "To ensure that patients with head and neck cancers and additional lung cancers will benefit from the results of our study as quickly as possible, we are currently in the process of testing the implementation of this diagnostic method in routine practice. This will include a prospective validation study to ensure that the new method can be made available to all affected patients."
Advertisement
Source-Eurekalert