The protein called ALK1 facilitated low-density lipoprotein pathway into cells. ALK1 directly bound to the lipoprotein and aided the transportation of LDL from blood into tissue.

‘The protein called ALK1 is an LDL-binding protein that initiates the early phases of atherosclerosis. A therapeutic approach to block ALK1 could help prevent atherosclerosis.’

To identify the mechanism, the research team screened more than 18,000 genes from the endothelium -- the inner layer of human blood vessels. They examined the transfer of LDL into endothelial cells and then focused on possible genes involved in the process. 




The researchers found that a protein called ALK1 facilitated LDL's pathway into cells. "We confirmed that ALK1 directly binds to LDL," said William C. Sessa, senior author and the Alfred Gilman Professor of Pharmacology and professor of medicine (cardiology). The team also determined that the "LDL-ALK1 pathway" aided the transport of LDL from blood into tissue.
The role of ALK1 in LDL accumulation was not previously known, said Sessa.
"The discovery of ALK1 as an LDL-binding protein implies that it might initiate the early phases of atherosclerosis," he noted. "If we can find a way of blocking ALK1 using small molecules or antibodies, it might be used in combination with lipid-lowering strategies." Current lipid-lowering strategies include statins, which target LDL cholesterol levels in the blood.
A therapeutic that blocks ALK1 "would be a unique strategy for reducing the burden of atherosclerosis and be synergistic with lipid- lowering therapies," Sessa noted.
Advertisement
The study was published in Nature Communications.
Advertisement