A research team led by scientists at the University of California , has discovered how particular genetic mutations affect the structure of protein complex implicated in autism
A research team led by scientists at the University of California , has discovered how particular genetic mutations affect the structure of protein complex implicated in autism. These proteins contribute to the developmental abnormalities found in children with autism.
“By understanding the three-dimensional structure of the normal protein, researchers can now make predictions about how mutations in the gene affect the structure of the gene product,” said first author Davide Comoletti, Ph.D., UCSD research associate at the Skaggs School of Pharmacy.Autism spectrum disorders are developmental disabilities that cause impairments in social interaction and communication. Both children and adults with autism typically show difficulties in verbal and non-verbal communication, interpersonal relationships, and leisure or play activities.
Comoletti and colleagues studied the neuroligin family of proteins that are encoded by genes known to be mutated in certain patients with autism. The neuroligins, and their partner proteins, the neurexins, are involved in the junctions, or synapses, through which cells of the nervous system signal to one another and to non-neuronal tissues such as muscle. These structural studies on neuroligins and neurexins represent a major step toward defining the synaptic organization at the molecular level.
“Normally, individual neuroligins are encoded to interact with specific neurexin partners. The two partners are members of distinct families of proteins involved in synaptic adhesions, imparting ‘stickiness’ that enables them to associate so that synapses form and have the capacity for neurotransmission,” said Palmer Taylor, Ph.D., Dean of the Skaggs School, Sandra & Monroe Trout Professor of Pharmacology, and co-principal investigator of the study, along with Jill Trewhella, Ph.D., of the University of Sydney, Australia and University of Utah.
Incorrect partnering that results when a mutant neuroligin fails to properly align at synapses helps explain why the autism spectrum disorders are manifested in subtle behavioral abnormalities that are seen at an early age.
“Abnormal synaptic development in nerve connections is likely to lead to cognitive deficits seen in patients with autism,” said Taylor. He added that synapse formation and maintenance occurs early in development when the infant brain is still plastic and formative. Therefore, by understanding the structural mutations that affect neurotransmission during development, new leads into drug therapies may emerge.
Advertisement
Taylor and colleagues have been studying the structure and function of acetylcholinesterase – a structurally related protein that mediates neurotransmission between nerves and between nerve and muscle – for the past 30 years. They began studying the neuroligins because of the similarity in structure and amino acid sequence with acetylcholinesterase.
Advertisement
LIN/M