Medindia LOGIN REGISTER
Medindia

Alzheimer's-Like Memory Loss Prevented in Fruit Flies by Blocking Protein Activity

A new study says that blocking the cellular signaling activity of a protein could prevent memory loss in fruit flies caused by brain plaques

A new study says that blocking the cellular signaling activity of a protein could prevent memory loss in fruit flies caused by brain plaques similar to those characteristic of Alzheimer's disease in humans.

Conducted by neuroscientists at Cold Spring Harbor Laboratory (CSHL), the study also resolves a long-standing controversy about the role of PI3 kinase, which was previously thought to have a protective function against the disease.

"Our work suggests that the peptides, or fragments, of _-amyloid associated with Alzheimer's disease directly increase the activity of PI3 kinase, which in turn causes memory loss and increases the accumulation of plaque in the brain," explained Yi Zhong, who led the research team.

beta-amyloid peptides are known to alter a slew of cellular signalling proteins such as PI3 kinase, causing a wide range of cellular dysfunctions within the brain's neurons, thus impairing brain activity.

The researchers conducted their study in a biological system that closely recapitulates the disease pathology seen in humans- fruit flies engineered to produce human _-amyloid in their brains.

The team previously showed that these flies develop many key features of Alzheimer's, including age-dependent memory loss, massive neurodegeneration, _-amyloid deposits and plaque accumulation.

Searching for the molecular basis of memory loss, the team discovered the importance of PI3-kinase by studying a type of neurotransmission called long-term depression (LTD).

Advertisement
In LTD, nerve signal transmissions at particular synapses, or junctions between nerve cells, is depressed for an extended period, usually lasting hours.

LTD is known to be pathologically enhanced when _-amyloid is present in fly brain.

Advertisement
The team has now found that LTD enhancement in the _-amyloid-producing flies is due to increased activity of PI3-kinase.

A reduction of this activity via injections of PI3 kinase-blocking drugs or by switching off the gene that encodes PI3 kinase both restored normal LTD signals.

Using these measures, the team not only improved memory in aging fruit flies, but also decreased the buildup of _-amyloid deposits.

The researchers also found that among patients, the disease is sometimes known as "brain diabetes" because brain tissue gradually becomes resistant to insulin, further impairing brain function.

"Our results now suggest that the Alzheimer's brains might become insulin-resistant because PI3 kinase activity is already at the maximum due to its activation by _-amyloid and therefore is no longer able to respond to insulin. It might be possible to tackle these various disease symptoms by targeting PI3 kinase," explained Zhong.

The study appears online in the Proceedings of the National Academy of Sciences.

Source-ANI
RAS


Advertisement