A new study has revealed that a new automated vocal analysis technology could revolutionize the screening for autism spectrum disorders and language delay
A new study has revealed that a new automated vocal analysis technology could revolutionize the screening for autism spectrum disorders and language delay. The LENA (Language Environment Analysis) system automatically labelled infant and child vocalizations from recordings and thereafter an automatic acoustic analysis designed by the researchers showed that pre-verbal vocalizations of very young children with autism are distinctly different from those of typically developing children with 86 percent accuracy.
The system also differentiated typically developing children and children with autism from children with language delay based on the automated vocal analysis.
The researchers analysed 1,486 all-day recordings from 232 children (or more than 3.1 million automatically identified child utterances) through an algorithm based on the 12 acoustic parameters associated with vocal development. The most important of these parameters proved to be the ones targeting syllabification, the ability of children to produce well-formed syllables with rapid movements of the jaw and tongue during vocalization. Infants show voluntary control of syllabification and voice in the first months of life and refine this skill as they acquire language.
The autistic sample showed little evidence of development on the parameters as indicated by low correlations between the parameter values and the children's ages (from 1 to 4 years). On the other hand, all 12 parameters showed statistically significant development for both typically developing children and those with language delays.
The research team, led by D. Kimbrough Oller, professor and chair of excellence in audiology and speech language pathology at the University of Memphis, called the findings a proof of concept that automated analysis of massive samples of vocalizations can now be included in the scientific repertoire for research on vocal development.
Although aberrations in the speech (or lack of it) of children with autism spectrum disorders has been examined by researchers and clinicians for more than 20 years, vocal characteristics are not included in standard criteria for diagnosis of autism spectrum disorders, said Steven F. Warren, professor of applied behavioural science and vice provost for research at the University of Kansas, who contributed to the study and was among the first to see the potential of the technology for autism spectrum disorders screening.
Advertisement
Warren predicts that LENA, which allow the inexpensive collection and analysis of magnitudes of data unimagined in language research before now, could significantly impact the screening, assessment and treatment of autism and the behavioural sciences in general.
Advertisement
He added: "The physics of human speech are the same in all people as far as we know."
LENA is digital language processor and language analysis software. The processor fits into the pocket of specially designed children's clothing and records everything the child vocalizes but can reliably distinguish child vocalizations from its cries and vegetative sounds, other voices and extraneous environmental sounds.
"Autism interventions remain expensive and arduous. This tool may help us to develop cost-effective treatments and better understand how they work and how to keep them working," said Warren.
LENA could allow parents to continue and supplement language enrichment therapy at home and assess their own effectiveness for themselves, Warren said. "In this way, LENA could function similarly to the way a pedometer measures how much exercise one gets from walking."
The study appears in the Proceedings of the National Academy of Sciences.
Source-ANI