Key biomarkers identified can now predict disability progression in multiple sclerosis, offering potential for more personalized and effective treatments.
A groundbreaking study has identified key biomarkers that predict disability progression in multiple sclerosis (MS). This discovery could revolutionize treatment strategies, enabling more personalized and effective care for millions of MS patients globally. (1✔ ✔Trusted Source
Key biomarkers identified for predicting disability progression in multiple sclerosis
Go to source) In this multicentre observational study, conducted across 13 hospitals in Spain and Italy, Dr. Enric Monreal and his team found that elevated serum neurofilament light chain (sNfL) levels—a protein indicating nerve cell damage—at the onset of MS can predict both relapse-associated worsening (RAW) and progression independent of relapse activity (PIRA).* Additionally, serum glial fibrillary acidic protein (sGFAP) levels—a protein derived from astrocytes that enters the bloodstream when the central nervous system (CNS) is injured or inflamed—correlate with PIRA in patients with low levels of sNfL.
‘Game-changer for #multiplesclerosis patients! New biomarkers could predict disease progression and guide tailored treatments. MS #nervousdisorders’
The study analysed blood samples from 725 MS patients collected within 12 months of disease onset. Using the Single Molecule Array (SIMOA) technique, researchers assessed the prognostic value of sNfL and sGFAP levels to predict RAW and PIRA. Elevated sNfL Levels to Increased Risk of MS
Key findings reveal that higher sNfL levels, indicative of acute inflammation within the CNS in MS, are associated with a 45% increased risk of RAW and a 43% increased risk of PIRA. Patients with high sNfL levels often did not respond well to standard disease-modifying treatments (DMTs) but showed significant benefits from high-efficacy DMTs (HE-DMTs) such as Natalizumab, Alemtuzumab, Ocrelizumab, Rituximab, and Ofatumumab.In contrast, patients with high sGFAP levels—which is an indicator of more localised inflammation driven by microglia in the CNS—and low sNfL levels experienced an 86% increased risk of PIRA. This group did not respond to current DMTs.
Interestingly, while sGFAP is known to be associated with progression, high sNfL levels limited the ability of sGFAP to predict this outcome. Specifically, sGFAP values were predictive of PIRA only in patients with low sNfL levels.
“Patients with low levels of both biomarkers had a good prognosis and could be treated with injectable or oral DMTs. However, high sNfL levels indicate a need for HE-DMTs to prevent disability worsening, while patients with high sGFAP levels and low values of sNfL may require new therapeutic approaches. These distinct pathways in MS have significant therapeutic implications, as current DMTs primarily target the peripheral adaptive immune system without affecting CNS immunity. Therefore, identifying patients with higher levels of peripheral inflammation is crucial for preventing disability and improving patient outcomes."
Advertisement
“By measuring both sNfL and sGFAP levels at disease onset, we gain valuable insights into the progression pathways of MS, enabling clinicians to identify the optimal patients for specific DMTs. This approach aims to prevent disability while avoiding unnecessary treatment-related risks for those at lower risk."
Advertisement
- Key biomarkers identified for predicting disability progression in multiple sclerosis - (https://ectrims.eu/press/key-biomarkers-identified-for-predicting-disability-progression-in-multiple-sclerosis/)