A simple model developed by researchers uses age, race and two blood biomarkers to predict heart failure risk.
A simple model developed by researchers uses age, race and two blood biomarkers to predict heart failure risk. The most widely used models for predicting heart failure rely on a complex combination of lifestyle, demographic, and cardiovascular risk factor information.
But the new model presented by Vijay Nambi, M.D., Ph.D., and Christie Ballantyne, M.D., of The Methodist Hospital Center for Cardiovascular Disease Prevention and the Baylor College of Medicine, uses age, race, and the blood concentrations of two blood biomarkers-troponin T and NT-proBNP-to show whether or not a patient is at elevated risk for heart failure.
They showed that adding these two blood biomarkers to the existing models resulted in the best risk prediction models.
Applying the model to patient data from the ongoing ARIC study (Atherosclerosis Risk in Communities), the researchers found their simple heart failure risk model was comparable to more complex models that take into account age, race, systolic blood pressure, antihypertensive medication use, smoking or former smoking, diabetes, body-mass index, prevalent coronary heart disease and heart rate.
The protein troponin T is part of the troponin complex and is traditionally used in the diagnosis of heart attacks. NT-proBNP is an inactive peptide fragment left over from the production of brain natiuretic peptide (BNP), a small neuropeptide hormone that has been shown to have value in diagnosing recent and ongoing congestive heart failure.
The researchers used both these markers in the prediction of future heart failure (over 10 years) thereby understanding which individuals among a general population are at the highest risk of heart failure.
Advertisement
Source-ANI