Bisphenol A has been worrying scientists since the last few years. This endocrine disruptor interferes with the hormone signaling system of the body

The answer, generated from cell-culture experiments, was that it produced different but no less profound effects. "We found that when you modify the BPA it works just as dramatically but in different ways on the same systems," said University of Texas Medical Branch at Galveston professor Cheryl Watson, senior author of a paper on the study now online in Endocrine Disruptors.
Watson and graduate student René Viñas examined both chlorinated BPA and BPA that had undergone sulfonation and glucuronodation — two processes the body uses to make a compound easier to excrete. In all three cases the modified forms of BPA worked through membrane estrogen receptors to deactivate key signaling enzymes known as ERK and JNK kinases.
"These kinases are major control centers, gathering all the cell signals, making decisions and then expediting them," Watson said. "If you change the dynamic by inactivating kinases, you can mess up cell signaling."
Very low levels of modified BPA were sufficient to produce the results — a phenomenon commonly seen with membrane receptors. The responses followed what is known as a non-monotonic pattern, varying irregularly when different concentrations of modified BPA were tested. The large number of experimental procedures this made necessary were facilitated by a BIOMEK-FX robot, which Viñas programmed to considerably increase the efficiency and precision of the process.
"The robot cuts down on the experimenter time required, because it does so much of the mechanical work, and it makes results more replicable, because the robot does things exactly the same every time," Watson said. "It gives us hope that we can make an impact even with the sheer volume of chemicals that we have to study and the detail we have to study them in."
Advertisement