A new study has pointed out the manner in which brain circuits are rewired during learning.
A new study has pointed out the manner in which brain circuits are rewired during learning. New connections between brain cells emerge in clusters in the brain as animals learn to perform a new task, according to the study led by researchers at the University of California, Santa Cruz.
The researchers studied mice as they learned new behaviours, such as reaching through a slot to get a seed. They observed changes in the motor cortex, the brain layer that controls muscle movements, during the learning process.
Specifically, they followed the growth of new "dendritic spines," structures that form the connections (synapses) between nerve cells.
"For the first time we are able to observe the spatial distribution of new synapses related to the encoding of memory," said Yi Zuo, assistant professor of molecular, cell and developmental biology at UC Santa Cruz and corresponding author of the study.
In a previous study, Zuo and others documented the rapid growth of new dendritic spines on pyramidal neurons in the motor cortex during the learning process.
These spines form synapses where the pyramidal neurons receive input from other brain regions involved in motor memories and muscle movements. In the new study, first author Min Fu, a postdoctoral researcher in Zuo's lab, analyzed the spatial distribution of the newly formed synapses.
Advertisement
Compared to non-clustered counterparts, the clustered synapses were more likely to persist through the learning sessions and after training stopped.
Advertisement
"We found that formation of a second connection is correlated with a strengthening of the first connection, which suggests that they are likely to be involved in the same circuitry. The clustering of synapses may serve to magnify the strength of the connections," Zuo said.
Another part of the study also supported the idea that the clustered synapses are involved in neural circuits specific to the task being learned. The researchers studied mice trained first in one task and then in a different task. Instead of grabbing a seed, the mice had to learn how to handle a piece of capellini pasta.
Both tasks induced the formation of clustered spines, but spines formed during the learning of different tasks did not cluster together.
The researchers also looked at mice that were challenged with new motor tasks every day, but did not repeat the same task over and over like the ones trained in seed-grabbing or capellini-handling. These mice also grew lots of new dendritic spines, but few of the new spines were clustered.
"Repetitive activation of the same cortical circuit is really important in learning a new task," Zuo said.
"But what is the optimal frequency of repetition? Ultimately, by studying the relationship between synapse formation and learning, we want to find out the best way to induce new memories," the researcher added.
The study used mice that had been genetically altered to make a fluorescent protein within certain neurons in the motor cortex. The researchers used a special microscopy technique (two-photon microscopy) to obtain images of those neurons near the surface of the brain.
The noninvasive imaging technique enabled them to view changes in individual brain cells of the mice before, during, and after learning a new behaviour.
The study has been published in Nature on February 19 (advance online publication).
Source-ANI