Researchers at the University at Buffalo probing into the effects of alcohol on the brain, and studying the zebra fish as a model, have zeroed in on many proteins in the central nervous system,
Researchers at the University at Buffalo probing into the effects of alcohol on the brain, and studying the zebra fish as a model, have zeroed in on many proteins in the central nervous system, that are impacted negatively with severe alcohol exposure. The scientists were now confident about the proteins’ turn out after prolonged alcohol exposure, after they found fish displaying abnormal behavior. Results of the research appeared in the Aug. 15 online edition of the European Journal of Pharmacology.
Five proteins were found to be over expressed and three were found to be under expressed. These proteins are thought to be involved in critical mechanisms such as programmed cell death, cholesterol balance, amino acid metabolism, oxidative stress and signal transduction."Identification of proteins that show selective changes in abundance after alcohol exposure has the potential to unlock new pathways both for understanding the mechanisms of alcoholism and alcohol toxicity, as well as its amelioration," said Richard A. Rabin, Ph.D., professor in the UB Department of Pharmacology and Toxicology and senior author on the study.
Senthilkumar Damodaran, doctoral student in pharmacology, is first author.
The study involved 16 long-fin striped zebrafish, in two trials of eight each, which were placed as a group in a tank with ethyl alcohol for four weeks. Rabin said the researchers chose zebrafish because they are easy to breed and maintain, their DNA sequences are similar to that of humans and they are sensitive to alcohol concentrations.
The concentration of alcohol used is similar to alcohol levels observed in humans, Rabin noted, and is comparable to levels reported in several rodent studies.
"Exposing the fish to alcohol for four weeks has the virtue of being a simple system," he said. "The ethanol concentration and length of exposure can be controlled tightly and applied identically to all
Once in the alcohol solution, the fish were photographed digitally every 30 seconds, and every third image was stored for analysis. Zebrafish normally swim in a cluster in unison, so the procedure allowed nonintrusive monitoring of an inherent behavior.
The photographs showed that after a week of alcohol exposure, the fish became less clustered and occupied a larger area of the tank. However, after two weeks of daily exposure, the cluster reformed and behavior returned to normal, suggesting the fish had become alcohol-tolerant.
The abnormal behavior, characterized by increased distance between fish in the group, returned after six weeks exposure, said Rabin, suggesting a progressive increase in behavior disruption.
"We don't know why this change occurred at this point," he said, "but it might indicate accumulated neurotoxic and neurodegenerative effects of chronic alcohol exposure."
Additional researchers on the study were Cynthia A. Dlugos, Ph.D., assistant professor of pathology and anatomical sciences, and Troy D. Wood, Ph.D., professor of chemistry. The research was supported by UB's Interdisciplinary Research and Creative Activities Fund.
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.
Source-Eurekalert
SAV