Medindia LOGIN REGISTER
Medindia

Can Sleep Brain Waves Defend Against Epileptic Activity?

by Colleen Fleiss on Dec 2 2023 11:06 AM
Listen to this article
0:00/0:00

Memory deficits in individuals with epilepsy, especially cognitive difficulties, might partially stem from the transient impairments caused by these slow waves.

Can Sleep Brain Waves Defend Against Epileptic Activity?
During wakefulness, epileptic patients display slow waves typically seen in the brain during sleep, potentially serving as a protective mechanism against heightened brain excitability linked to epilepsy. (1 Trusted Source
Wake slow waves in focal human epilepsy impact network activity and cognition

Go to source
)
The research, published in //Nature Communications and involving the National Institute for Health and Care Research (NIHR) UCLH Biomedical Research Centre, examined electroencephalogram (EEG) scans from electrodes in the brains of 25 patients with focal epilepsy (a type of epilepsy characterized by seizures arising from a specific part of the brain), while they carried out an associative memory task.

The electrodes had been placed in the patients’ brains to localize abnormal activity and inform surgical treatment.

During the task, participants were presented with 27 pairs of images that remained on a screen for six seconds. The images were in nine groups of three – each group featuring a picture of a person, a place and an object. In each case, participants had to remember which images had been grouped together. EEG data were recorded continuously throughout the task.

After reviewing the EEG data, the team found that the brains of people with epilepsy were producing slow waves – lasting less than one second - while they were awake and taking part in the task.

The occurrence of these “wake” slow waves increased in line with increases in brain excitability and decreased the impact of epileptic spikes on brain activity.

In particular, there was a decrease in the “firing” of nerve cells, which the researchers say could protect against epileptic activity.

Advertisement
Senior author, Professor Matthew Walker (UCL Queen Square Institute of Neurology), said: “Sleep is crucial for repair, maintenance and resetting brain activity. When we are awake we experience a progressive increase in brain excitability, which is redressed during sleep."

Wakeful Emergence of Sleep Slow Waves in Epilepsy-Linked Brain Activity

Recent studies have indicated that a specific form of brain activity, slow waves during sleep, play a crucial role in these restorative functions. We wanted to address whether these ‘sleep’ slow waves could occur during wakefulness in response to abnormal increases in brain activity associated with epilepsy.

“This mechanism takes advantage of protective brain activity that normally occurs during sleep, but, in people with epilepsy, can occur during wakefulness.”

Advertisement
As part of the research, the team also wanted to test if the occurrence of “wake” slow waves had any negative effects on cognitive function.

During the memory task, researchers found that the “wake” slow waves reduced nerve cell activity and so affected cognitive performance – increasing the length of time required by patients to complete the task.

The team reported that for each increase of one slow wave per second, the reaction time increased by 0.56 seconds.

The team hope that future studies will be able to increase such activity as a potential novel treatment for people with epilepsy.

Lead author, Dr Laurent Sheybani (UCL Queen Square Institute of Neurology), said: “The parallel between the function of slow waves during sleep and, here, their beneficial impact in a pathological condition, is particularly interesting."

Our study suggests that a naturally occurring activity is employed by the brain to offset pathological activities; however, this comes with a price, since ‘wake’ slow waves are shown to impact on memory performance.

“From a purely neurobiological perspective, the research also reinforces the idea that sleep activity can happen in specific areas of the brain, rather than occurring evenly throughout the brain.”

The research was funded by the Medical Research Council, Wellcome, UCLH Biomedical Research Centre and The Swiss National Science Foundation.

Reference:
  1. Wake slow waves in focal human epilepsy impact network activity and cognition - (https://www.nature.com/articles/s41467-023-42971-3)
Source-Eurekalert


Advertisement