Pancreatic cancer tumors and other cancerous tumors are hot or cold, research at the University of Pennsylvania School of Medicine finds. These new findings could help oncologists more precisely tailor treatments to a patient's unique tumor composition.

Recent studies from Penn Medicine and other institutions have suggested that the degree to which T cells are attracted to a tumor is regulated by genes specific to that tumor. "There is no disputing that targeting immune cells has led to promising outcomes for many cancer patients, but not every person responds to these types of treatments," said senior author Ben Stanger, MD, PhD, a professor of Gastroenterology and Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania. "Every tumor is different, so we're investigating how to use the underlying biology of tumor cells to successfully treat more cancer patients." Stanger is also director of the ACC Pancreatic Cancer Research Center.
Pancreatic cancer is predicted to become the second leading cause of cancer death in the United States by 2025.
Part of a tumor's diversity includes the amount and type of immune cells that become part of the cancerous mass. To grow, tumors need to avoid the immune system, which happens in two ways: by developing as a cold tumor with a limited number of T cells, or as a hot tumor by exhausting the T cells, effectively protecting tumor cells from destruction by a patient's immune system.
Pancreatic tumors span the spectrum of T cell infiltration, but the basis for this heterogeneity is poorly understood. In this study, the Penn team created a library of pancreatic tumor cell lines from a mouse model of pancreatic adenocarcinoma. These cell lines, when implanted in normal mice with a working immune system, grew into tumors that fell into the hot and cold categories, with cold tumors being the dominant type. In addition, they found that whether a tumor was hot or cold determined whether it would respond to immunotherapy.
Half of the mice with hot tumors experienced tumor regressions after treatment with a checkpoint blockade drug, an effect that was enhanced with the addition of either an anti-CD40 agonist, combined chemotherapy, or both. Of the 26 mice bearing hot tumors and treated with a combination of chemo- and immunotherapy called GAFCP, 20 survived to more than six months, suggesting a durable response to the therapy. By contrast, none of the mice with cold tumors cleared their cancer following this therapy.
Advertisement
The cell lines that the team generated mimic a spectrum of pancreatic tumor features, including the types of immune cells they contain. In the future, these tumor cell lines could help to further identify and optimize therapies for specific subsets of patients with various states of tumor heterogeneity.
Advertisement