A new paper in 'Brain' identifies molecular mechanisms causing neuronal damage in multiple sclerosis patients with progressive clinical deterioration
Potential mechanisms that could lead to the development of therapies which effectively manage progressive multiple sclerosis (MS), were identified by the researchers at the Advanced Science Research Center (ASRC) at the Graduate Center, CUNY and Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai. They published their findings in the journal Brain. The disability burden for people with multiple sclerosis (MS) can vary significantly depending on whether they have a relapsing/remitting form of the disease, where they experience periods of clinical remission, or a progressive form, where they have continued neurological deterioration without clinical remission. Effective therapies exist for managing relapsing/remitting MS, but treatment for progressive MS has proved more challenging.
‘Drugs which improve mitochondrial function could be the new potential treatment for patients with progressive MS.’
Read More..
Previous research had suggested that dysfunction of neuronal mitochondria -- the energy-producing subcellular organelles -- occurs in the brains of MS patients with progressive clinical disability. However, the molecular mechanisms underlying this process remained elusive. Read More..
"Because the brain is bathed by the cerebrospinal fluid (CSF), we asked whether treating cultured neurons with the CSF from MS patients with a relapsing/remitting or a progressive disease course would possibly elicit different effects on neuronal mitochondrial function," said the study's primary investigator Patrizia Casaccia, Einstein Professor of Biology at The Graduate Center and founding director of the Neuroscience Initiative at the ASRC. "We detected dramatic differences in the shape of the neuronal mitochondria and their ability to produce energy. Only exposure to the CSF from progressive MS patients caused neuronal mitochondria to fuse and elongate while rendering them unable to produce energy. We therefore searched for potential mechanisms of CSF-induced neurodegeneration with the intent to define therapeutic strategies."
Methodology
CSF samples were acquired from 15 patients with relapsing/remitting MS and 29 with progressive MS. These samples were extensively characterized, both functionally and metabolically. Video recordings of live, cultured rat neurons that were exposed to the CSF revealed important differences. Researchers detected a characteristic elongation of mitochondria exposed to CSF samples from progressive MS patients.
This characteristic response was not present in mitochondria exposed to CSF from patients with a relapsing/remitting MS. Biochemical characterization of mitochondrial activity further revealed that elongated mitochondria were less functional and therefore less capable of producing energy, which eventually resulted in neuronal demise.
Advertisement
"When we exposed cultured neurons to ceramides, we elicited the same changes caused by exposure to CSF from progressive MS patients, and we further discovered that ceramides induced neuronal damage by acting on two cellular mechanisms," said Maureen Wentling, a research associate in the Casaccia lab and the study's first author. "On one end, ceramides impaired the ability of neurons to make energy by directly damaging the mitochondria. On the other end, they also forced neurons to more rapidly uptake glucose in an attempt to provide energy for the cell."
Advertisement
Source-Eurekalert