Chesma is the new lightweight and reusable eye mask. It is unobtrusive eyewear embedded with fabric-based electrodes that help capture pulse, eye movement, and sleep signals.
A new, lightweight eye mask named Chesma has been invented that can unobtrusively capture pulse, eye movement, and sleep signals when worn in an everyday environment. The sensing eye mask was developed by the same team of researchers who invented physiology-sensing pajamas at the University of Massachusetts Amherst. Senior authors writing this week in the journal Matter are materials chemist and Wearable Electronics Lab director Trisha L. Andrew, with computer scientist Deepak Ganesan and others. They point out that "being able to track pulse and eye movement in a single wearable device will enable a host of sleep and psycho-social studies, in addition to improving the accuracy and usability of gaming and virtual reality headsets." First author S. Zohreh Homayounfar, will present the findings this week at the online Fall Meeting of the American Chemical Society.
‘'Chesma' is a unique combination of electrode networks with the pressure sensor. It will help conduct many new studies to investigate sleep quality, sleep disorders, mental health, neurodegenerative diseases, and schizophrenia.’
Read More..
Recording health and behavior signals on or near the face is challenging, notes Andrew, "because most people are really sensitive and reactive to objects placed on their face or head." Ganesan adds that "up to now, integrating many different sensing elements in one garment seemed burdensome, especially when it comes to small eye masks."Read More..
They say their lightweight, tailorable eye mask named "Chesma," is fitted with two kinds of fabric electrodes that can simply be sewn onto a variety of pre-made garments and further miniaturized, if desired. This capability allows them to integrate electrodes into a lightweight foam mask for recording electro-oculography and cardiac signals. Their design automatically positions the electrodes on the face with no need for custom fitting.
As explained in a video created by Ph.D. student and first author, S. Zohreh Homayounfar, the mask contains five silver (Ag) thread-based hydrogel electrodes -dubbed tAgTrodes - needed to translate ion-based biological signals into an electric current, among other goals. The researchers took advantage of a vapor-phase deposition process to create the electrodes, including what they call a first-of-its-kind reusable and washable hydrogel component that distinguishes the tAgTrode from other equivalents.
Here, Andrew says she takes pride in noting that "part of the work that went into carrying out the deposition process was performed by Emerson T. Alexander, an exceptional student from Springfield Technical Community College," who took part in a paid internship in her lab and funded by the L'Oréal USA For Women in Science program.
The mask also contains one fabric pressure sensor (PressION) positioned over an artery to monitor pulse as a proxy for cardiac function, with the whole linked to two microcontrollers with water-repellant silver threads as connectors. Another author, Ph.D. student Ali Kiaghadi, explains that "the electrode and sensor data need to be communicated once they are acquired. Our design transmits raw data to the cloud for processing and data visualization, so that we can reduce the amount of instrumentation that we need to include in the mask itself."
Advertisement
Andrew expects that Chesma's "unique bimodality" - the combination of electrode network with the pressure sensor - will enable many new cutting-edge studies not possible until now, for investigating sleep quality, sleep disorders, mental health, neurodegenerative diseases and schizophrenia, for example.
Advertisement