Medindia LOGIN REGISTER
Medindia

Common Antibiotic Can Act As An ‘Off Switch’ For Parkinson’s Therapy

According to a study on rats conducted by University of Florida researchers, a common antibiotic can act as an ‘off switch’ for a gene therapy that is being developed for Parkinson's disease.

According to a study on rats conducted by University of Florida researchers, a common antibiotic can act as an ‘off switch’ for a gene therapy that is being developed for Parkinson's disease.

The findings of the study have explained how new, therapeutic genes that have been irrevocably delivered to the human brain to treat Parkinson's can be controlled if the genes unexpectedly start causing problems.

Meanwhile, in a review of Parkinson treatments, the researchers have said that earlier experiments using growth factors - naturally occurring substances that cause cells to grow and divide - to rescue dying brain cells may have failed because they occurred too late in the course of the disease.

Taken together, the findings have indicated that gene therapy to enable the brain to retain its ability to produce dopamine, a neurotransmitter that falls in critically short supply in Parkinson's patients, could be safely attempted during earlier stages of the disease with an added likelihood of success.

"We have worked every day for 10 years to design a construct to the gene delivery vector that enhances the safety profile of gene transfer for Parkinson's disease," said Ronald Mandel, a professor of neuroscience at UF.

He added: "With that added measure of safety, we believe we can intervene with gene transfer in patients at earlier stages of the disease. We strongly believe that trials to save dopamine-producing connections in patients with Parkinson's disease have failed because the therapy went into patients who were in the late stages of the disease and who had too few remaining dopamine-producing connections."

Often patients are given prescriptions for levodopa (L-dopa), which is converted into dopamine by enzymes in the brain. But such treatment is not effective over time, and does nothing to slow the disease's progression.

Advertisement
In the meantime, trials in the US to treat Parkinson's involving direct infusion of growth factors or the transplantation of genes that produce growth factors have had limited success, with some side effects.

Mandel's research group has concentrated on using an adeno-associated virus to engineer brain cells in animal models with genes that can protect dopamine-producing cells, which then do the vital work of producing glial cell line-derived neurotrophic factor (GDNF).

Advertisement
The naturally occurring protein is important for the survival of dopamine-producing neurons during brain development, and a survival factor when given to adults.

For the current study, the researchers engineered the virus with two genes that must act in concert to produce the protein.

But this precise interaction can be inhibited with dietary doxycycline, an antibiotic that is often prescribed in low doses to treat bacterial growth related to acne.

Depending on the amount of the antibiotic, protein production can be reduced or stopped, which would for the first time give medical investigators the ability to regulate gene therapy after the treatment was delivered.

"With this technique, you could adjust the therapy in the patient. That would be extremely helpful because no one is really certain yet what dosage is required for a protective effect in humans. The process is also much more sensitive than we had imagined it would be. GDNF production can be shut down completely with a dose of doxycycline that is much smaller than what is commonly prescribed," said Fredric P. Manfredsson, a postdoctoral associate in UF's department of neuroscience.

The researchers used a number of methods to gauge GDNF production, but one was uncommon and involved the novel observation of the rats' weight.

The scientists found that they could control the rate of weight gain in the rats with dietary doxycycline, which essentially verified they were controlling the GDNF therapy.

The study has been published in the journal Molecular Therapy.

Source-ANI
ARU


Advertisement