A new chemical tool, MARIO, shows how free Mg2+ ions regulate chromosome shape

‘During cell division, an increase in magnesium, which is released by the ATP hydrolysis, contributes to chromosome condensation.’

"Chromosomes are negatively charged. Free cations like Mg2+ neutralize the charge so that the chromosomes can condense during cell division," explains Prof. Kazuhiro Maeshima at the National Institute of Genetics (NIG), who studies the 3D dynamics of DNA and led the study. 




Although it is known that Mg2+ might have an important role in chromosome rearrangement, quantitatively measuring Mg2+ concentration during cell division has been a challenge. Prof. Maeshima therefore teamed with Osaka University Prof. Takeharu Nagai, a leader in the development of chemical probes for intracellular signaling. Together, they formulated MARIO (Magnesium Ratiometric Indicator for Optical Imaging), a fluorescent probe that measures Mg2+ concentration.
MARIO is based on a calcium indicator known as YC3.60 and is composed of enhanced cyan fluorescent protein, the yellow fluorescent protein VENUS, and a Mg2+-binding domain found in bacteria known as CorA. Mg2+ binding to CorA causes a structural change in MARIO that changes the fluorescence signal.
"We could improve MARIO's performance, both in terms of Mg2+affinity and dynamic range, by truncating CorA and by introducing random mutations into the structure," says Nagai.
Mg2+ itself is abundant in the cell, but not in free form. Instead it is usually captured by ATP. Using MARIO, the researchers found that during cell division, free Mg2+ greatly increases, enabling the chromosomes to condense. The increase peaked during the transition from metaphase to anaphase, which marks the period in cell division that the cell membrane begins showing signs of breaking into two cells.
Advertisement
Because cell division is an energy intensive event, it is presumed that the cell will consume more ATP.
Advertisement
A number of diseases like cancer are caused by abnormalities in cell division. We expect that understanding how chromosome condensation is regulated will help us understand how these diseases develop and possible ways to treat them," says Maeshima.
Source-Eurekalert