Patients with lesions to the dorsal pathway know where objects are but have difficulty recognizing them.
![Dartmouth Researchers Shed Light on How Our Brains See the World Dartmouth Researchers Shed Light on How Our Brains See the World](https://images.medindia.net/health-images/1200_1000/epilepsy.jpg)
‘The sensitivity of the human visual system for detecting motion cues is critical for surviving in this dynamic world. Researchers observed that the brain may process motion differently based on whether it is animate motion or inanimate motion.’
![pinterest](https://images.medindia.net/icons/news/social/pinterest.png)
Co-lead author Zhengang Lu, a doctoral student in Psychological and Brain Sciences, said, "By analyzing how terrorists would move in public spaces and incorporating this action signature into pattern recognition algorithm, better accuracy of recognition of terrorist suspects may be achieved than with facial-feature based recognition algorithm." ![twitter](https://images.medindia.net/icons/news/social/twitter.png)
![facebook](https://images.medindia.net/icons/news/social/facebook.png)
![whatsapp](https://images.medindia.net/icons/news/social/whatsapp.png)
![linkedin](https://images.medindia.net/icons/news/social/linkedin.png)
![pinterest](https://images.medindia.net/icons/news/social/pinterest.png)
To survive in a dynamic world, the sensitivity of the human visual system for detecting motion cues is a critical evolutionary advantage. For example, people with akinetopsia (the inability to perceive motion) have difficulty crossing the street because they cannot gauge oncoming traffic - they see moving objects as a series of stills, like an object moving under strobe lights. People with object agnosia (the inability to recognize objects) have difficulty navigating everyday life.
The Dartmouth researchers studied neural activity to understand how the brain processes motion in still pictures of animate and inanimate objects. Their findings showed that the brain may process motion differently based on whether it is animate motion or inanimate motion. This suggests the brain not only categorizes objects into animate versus inanimate, but it knows the location of objects based on whether they are animate or inanimate.
Lu said, "Our findings suggest the brain's two visual pathways interact with each other instead of being separate when processing motion and objects. To fully understand a complex scene when multiple objects moving at different speed, the brain combines the motion signal with the knowledge of how a particular object will move in the world. Our results might not be able to provide treatment directly, but they suggest that treatment for people with motion blindness and object agnosia should consider the functional interaction between these two pathways."
Source-Eurekalert