Using mass sequencing techniques, scientists have identified up to 80 novel genomic regions linked with a higher susceptibility to developing breast, prostate and ovarian cancers.
Using mass sequencing techniques, scientists have identified up to 80 novel genomic regions linked with a higher susceptibility to developing breast, prostate and ovarian cancers. The conclusions are drawn from the collaborative work of more than 50 groups around the world, who carried out their genotyping in four different centres and whose work was coordinated by Javier Benítez, Director of the Human Cancer Genetics Programme at the Spanish National Cancer Research Centre (CNIO).
In order to identify those genetic 'errors' or genetic variants that might increase the risk of suffering from cancer among the general population, the project's researchers genotyped more than 200,000 SNPs—single- nucleotide polymorphisms or genome letter changes—selected from the genome of 100,000 breast, prostate and ovarian cancer patients, as well as from 100,000 control cases without cancer.
Thanks to the massive genotyping of these individuals, the authors of the different studies published today have identified 41 new genes or regions of the genome that may be susceptible to contributing to the development of breast cancer, 23 new ones for prostate cancer and 4 for ovarian cancer."Specifically, the 41 new genes identified for breast cancer increase to almost 70 the number of genes that indicate a high probability of developing this illness when mutated," explains Benítez, adding that: "these data indicate that up to 5% of the general population may have a high risk of suffering from this illness at some point in their lives".
Amongst all of the genes identified, there are some that could help cancerous cells to spread throughout the body, others would favour the uncontrolled growth of cells and still others would help by removing the brakes that stop cells from growing.
The authors of the study have also identified TERT as the gene susceptible to breast and ovarian cancer. This finding can add up to the recent study published in Nature Genetics, led by researchers Carlos López-Otín, from the University Institute of Oncology at the University of Oviedo, Elias Campo, from the Hospital Clínic /University of Barcelona, and Maria A. Blasco, the Director of CNIO, which relates the role of telomeres and their protective function of the genetic material with the development of chronic lymphocytic leukaemia.
GENETIC HETEROGENEITY AS A CAUSE OF CANCER
Advertisement
"In the case of breast cancer, we have discovered up to 1,000 genes that increase the risk of suffering the illness only very slightly, but when accumulated, they could explain its appearance in some patients," explains Benítez.
Advertisement
Benítez concludes: "Every tumour is born with its own distinct genetic history, so if we identify those individuals whose genetic characteristics confer them a greater probability of developing cancer, we will be able to provide them with more adequate follow-up and thus reduce the appearance of the disease or diagnose it in its initial phases."
The collaborative effort of thousands of national and international scientists has opened new perspectives for cancer research, offering new clues to the understanding of the molecular pathways in cancer cells. These studies could also expand the possibilities in the search for new therapeutic treatments against cancer.
The CNIO, in addition to coordinating the genotyping of tumours, has also taken part in the genotyping of breast cancer studies —via the National Genotyping Centre-Instituto de Salud Carlos III (CeGen-ISCIII), in collaboration with Anna González-Neira, Head of the Human Genotyping- CEGEN Core Unit – as well as in the corresponding data analysis with the help of Roger Milne from the Human Genetics Group and Ana Osorio from the Genetic and Molecular Epidemiology Group. This work has been madepossible thanks to the collaboration of the Monte Naranco hospital in Oviedo and the La Paz hospital in Madrid.
About COGS
The main aims of the European COGS project are directed towards the study of the genetic and environmental factors that predispose people to the appearance of breast, prostate and ovarian cancers, the most common forms of cancer in developing countries, and towards how society might benefit from such results.
The European COGS project is the result of the collaboration between four international consortiums: BCAC, whose aim is to study breast cancer; PRACTICAL, which researches genetic alterations associated with prostate cancer; OCAC, whose aim is to study ovarian cancer, and CIMBA, which studies BRCA1 and BRCA2 modifications.
The results generated by COGS help to understand the biological processes that are involved in carcinogenesis and might also help the development of new therapeutic tools as well as predictive risk tests for the disease.
The project is member of a local communication network called CommHERE, an initiative funded by the European Commission. The goal of CommHERE is to disseminate among the society the health research results developed under the funding of the 7th Framework Programme of the EC.
Source-Eurekalert