There are brain differences in athletes who play contact sports when compared to those who play noncontact sports.
![Does Brain Organization Change With the Type of Sport You Play? Does Brain Organization Change With the Type of Sport You Play?](https://images.medindia.net/health-images/1200_1000/epilepsy.jpg)
‘Long hours that contact sport players spend on eye-hand coordination skills leads to a reorganization of the brain in the areas dedicated to eye movements.’
![pinterest](https://images.medindia.net/icons/news/social/pinterest.png)
While more research is needed, senior author Nicholas Port said the findings contribute important information to research on subconcussive blows -- or "microconcussions" -- that are common in sports such as football, soccer, ice hockey, snowboarding and skiing. Interest in subconcussions has grown significantly in recent years as the long- and short-term risks of concussions -- or mild traumatic brain injury
-- have become more widely known and understood. ![twitter](https://images.medindia.net/icons/news/social/twitter.png)
![facebook](https://images.medindia.net/icons/news/social/facebook.png)
![whatsapp](https://images.medindia.net/icons/news/social/whatsapp.png)
![linkedin](https://images.medindia.net/icons/news/social/linkedin.png)
![pinterest](https://images.medindia.net/icons/news/social/pinterest.png)
"The verdict is still out on the seriousness of subconcussions, but we've got to learn more since we're seeing a real difference between people who participate in sports with higher risk for these impacts," said Port, an associate professor in the IU School of Optometry. "It's imperative to learn whether these impacts have an actual effect on cognitive function -- as well as how much exposure is too much."
To conduct the study, Port and researchers in the IU Bloomington Department of Psychological and Brain Sciences scanned the brains of 21 football players and 19 cross-country runners using fMRI technology.
The researchers focused on these sports because football is a physical game in which small but repeated blows to the head are common, whereas cross-country is extremely low risk for such impacts. The contact sport players did not have a history of concussion, but these sports are known to lead to repeat subconcussive blows.
The researchers also scanned the brains of 11 non-college-level athletes from socioeconomic backgrounds similar to the football players to ensure their scan results were not rooted in factors unrelated to their sport.
Advertisement
"We focused on these brain regions because physicians and trainers regularly encounter large deficits in players' ability to smoothly track a moving point with their eyes after suffering an acute concussion," Port said.
Advertisement
"Everyone from musicians to taxi drivers has differences in brain activity related to their specific skills," he said. "The differences in this study may reflect a lifetime exposure of subconcussive blows to the head, or they could simply be the result of playing a visually demanding sport where you're constantly using your hands and tracking the ball."
The ideal way to find the root cause of these differences would be a similar analysis using only football players, he said. The next generation of wearable accelerometers to measure physical impact during play will greatly enhance researchers' ability to confidently sort players of the same sport into groups based on exposure to subconcussions.
Source-Eurekalert