One of the great future challenges of health care systems worldwide is the projected substantial increase in Alzheimer's disease due to the higher life expectancy in modern societies.

"The method shows a substantially higher sensitivity than established behavioral rating scales, such as Cohen-Mansfield Agitation Index" emphasizes Prof. Teipel, head of DZNE Rostock and responsible for the study design. "This means, we now have a more sensitive instrument for detecting changes in behavior that allows us to monitor disease progress and the efficacy of interventions." He adds: "And the measure we obtain is objective, it does not require the assessment by a human observer."
"It is fascinating that our approach is able to work with unconstrained everyday motion behavior," says Prof. Kirste from the Computer Science Department, who has designed the analysis algorithm. "Considering the high variance of everyday activities, we think that the ability to detect the influence of Alzheimer’s disease on the temporal structure of this behavior is a very important result." He remarks: "On a practical level this means we can use low-cost sensing devices and we do not require the patients to perform specific controlled activities. Prospectively, it might even be possible to use the data of established devices such as mobile phones or navigation support devices for this purpose."
Source-Eurekalert