The genome of the spontaneously hypertensive rat has been sequenced by scientists and could help understand causes of the disease in humans.
The genome of the spontaneously hypertensive rat has been sequenced by scientists and could help understand causes of the disease in humans.
The spontaneously hypertensive rat (SHR) strain is the most widely studied animal model of human hypertension. Research on this strain has identified many genomic regions that likely harbour genetic variants that are responsible for the hypertension phenotype, however without a complete sequence of the hypertensive rat genome, it has been difficult to resolve many of these genomic changes and explore their molecular consequences.Taking advantage of new technologies that are rapidly driving down the cost of DNA sequencing, an international team of researchers led by Timothy Aitman of the MRC Clinical Sciences Centre and Imperial College London have sequenced the first genome of a mammalian disease model with second-generation sequencing technology.
By comparing the SHR genome sequence with that of the rat reference genome sequence, Aitman and colleagues generated a nearly complete catalog of SHR genomic variants that could contribute to hypertension and other phenotypes.
They also found that genes known to be abnormally expressed in SHR are especially enriched for sequence variants.
The group expected that the genome sequence would reveal mutations disrupting a number of genes in the SHR strain, however the number of mutated genes they found was quite surprising - 788 genes are mutated in SHR compared to the reference genome, including 60 that are deleted altogether.
"So many major differences in protein sequence were unexpected because of the previous belief that differences in a small number of genes and proteins would be responsible for the phenotypic differences between such rat strains," said Aitman.
Advertisement
The authors suggest that defects in these functional categories may be causally associated with the known phenotypes of this strain.
Advertisement
"This in turn will pave the way for greater understanding of the genetic basis of hypertension in humans," Aitman said.
The study has been published online in Genome Research.
Source-ANI
RAS