Delivering targeted radiation therapy to tumors has posed a stiff challenge for scientists.
Delivering targeted radiation therapy to tumors has posed a stiff challenge for scientists. Robertson and researchers from Oak Ridge National Laboratory and the School of Medicine at the University of Tennessee in Knoxville used the element "actinium," which is an element known as an "alpha emitter" because it produces alpha particles.
As it decays, actinium creates three additional elements that produce alpha particles. Due to the strength of these particles though, keeping the elements in place at cancer sites was not possible, until Robertson and Mark McLaughlin, MU doctoral student and co-author on the study, designed a gold-plated nanoparticle that serves as a holding cell for the elements, keeping them in place at the cancer site.
Robertson's nanoparticle is a layered device. At the core is the original element, actinium. Robertson's team then added four layers of material and then coated the nanoparticle with gold. This made the nanoparticle strong enough to hold the actinium – and the other alpha emitters that are eventually created – long enough for any alpha particles to destroy nearby cancer cells.
"Holding these alpha emitters in place is a technical challenge that researchers have been trying to overcome for 15 years," Robertson said. "With our nanoparticle design, we are able to keep more than 80 percent of the element inside the nanoparticle 24 hours after it is created."
Source-Eurekalert