A high-salt diet can increase dementia risk even when blood pressure is normal because of the reduction in the resting blood flow.
Highlights
- Diets rich in salt can reduce the resting blood flow to the brain.
- A reduced blood flow can increase the risk of dementia.
- Reversing salt intake to normal limits can restore cerebral blood flow and endothelial function.
"We discovered that mice fed a high-salt diet developed dementia even when blood pressure did not rise," said senior author Dr. Costantino Iadecola, director of the Feil Family Brain and Mind Research Institute (BMRI) and the Anne Parrish Titzell Professor of Neurology at Weill Cornell Medicine. "This was surprising since, in humans, the deleterious effects of salt on cognition were attributed to hypertension."
High Salt Intake Affects Blood Flow in the Brain
A vast majority, about 90 percent of American adults, consume more dietary sodium than the recommended 2,300 mg per day.
The mice were given food containing 4 percent or 8 percent salt, representing an 8- to 16-fold increase in salt compared to a normal mouse diet. The higher level was comparable to the high end of human salt consumption.
The scientists discovered that an impaired ability of cells lining blood vessels, called endothelial cells, reduced the production of nitric oxide, a gas normally produced by the endothelial cells to relax blood vessels and increase blood flow.
Rodents that only ate the high-salt diet developed dementia, performing significantly worse on an object recognition test, a maze test and nest building--a typical activity of daily living for mice, spending less time building nests and using much less nesting material than normal mice.
How Can High Salt Intake Cause Dementia?
The scientists performed several experiments to understand the biological mechanisms connecting high salt intake with dementia. They discovered that the mice developed an adaptive immune response in their guts, with increased activity of a subset of white blood cells that play an important role in the activity of other immune cells.
The increase in those white blood cells, T helper lymphocytes called TH17, boosted the production of a protein called interleukin 17 (IL-17) that regulates immune and inflammatory responses, causing a reduction in the production of nitric oxide in endothelial cells.
In a final experiment, the scientists treated the mice with a drug known to prevent the suppression of nitric oxide activity, called ROCK inhibitor Y27632. The drug reduced circulating levels of IL-17 and the mice showed improved behavioral and cognitive functions, said Dr. Iadecola.
"The IL-17-ROCK pathway is an exciting target for future research in the causes of cognitive impairment," said Dr. Giuseppe Faraco, assistant professor of research in neuroscience in the BMRI and first author of the study. "It appears to counteract the cerebrovascular and cognitive effects of a high-salt diet, and it also may benefit people with diseases and conditions associated with elevated IL-17 levels, such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease and other autoimmune diseases."
Reference
- Giuseppe Faraco, David Brea, Lidia Garcia-Bonilla, Gang Wang, Gianfranco Racchumi, Haejoo Chang, Izaskun Buendia, Monica M. Santisteban, Steven G. Segarra, Kenzo Koizumi, Yukio Sugiyama, Michelle Murphy, Henning Voss, Joseph Anrather & Costantino Iadecola. ‘Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response.’Nature Neuroscience (2018). http://dx.doi.org/10.1038/s41593-017-0059-z .
Source-Medindia