The biology of oxidative stress was studied on paraquat herbicide to establish the link between the herbicide and Parkinson’s disease by north-western scientists.
Highlights
- Exposure to paraquat herbicide can lead to Parkinson’s disease
- Using the CRISPR-Cas9 gene-editing tool, the biology of oxidative stress was analyzed and studied in paraquat herbicide
- In general, dopaminergic neurons in the small brain, are highly sensitive to oxidants. Ingestion of paraquat could lead to the increased production of oxidants
- Loss of function of the dopaminergic neurons in the small brain is one of the main causes of Parkinson’s disease
The use of paraquat, which causes cell death via oxidative stress, is restricted in the United States and banned in the European Union, but the chemical is still used widely throughout Asia and the developing world, according to Chandel, also a professor of Cell and Molecular Biology. Ingestion of paraquat can lead to lung fibrosis or even death, but a 2011 study linked occupational use to an increased risk for Parkinson’s disease, renewing interest in its impact on humans.
A major cause of Parkinson’s is the loss of function of dopamine neurons in a small brain region called the substantia nigra pars compacta, according to previous research. Those neurons are known to be highly vulnerable to oxidative stress, leading scientists to hypothesize paraquat was linked to Parkinson’s disease through this oxidative stress.
"Paraquat generates a lot of oxidants. Naturally, those dopaminergic neurons will be the most susceptible to damage," Chandel said.
However, the mechanism by which paraquat created oxidants was unknown -- until now.Chandel and his collaborators conducted a CRISPR-Cas9 positive-selection screen, creating thousands of cells, each with one individual gene turned off.
They exposed that subset of cells to paraquat - the majority of cells died, but not all of them. Certain cells with knocked-out genes were resistant to paraquat, suggesting these genes may be responsible for the toxicity.
"Certain people with genetic mutations could have high levels of this gene. They would be very susceptible to paraquat poisoning while working on a farm, for example," he said.
However, the most impactful takeaway from the paper may be as a proof-of-concept for the investigative biology of oxidative stress, according to Chandel.
POR had been previously implicated in oxidant generation, but the majority of evidence had pointed to systems in the mitochondria, according to the study, and no definitive answer had emerged until this study was conducted.
"Now, we can go in and test how agents of oxidant stress work," Chandel said. "The beauty of the paper is in the power of these unbiased genetic screens we can now use with CRISPR technology."
Investigating oxidant stress could pay dividends in the future, according to Chandel, including in the development of drugs designed to generate oxidative stress in cancer cells, killing them while leaving healthy cells alone. While some drugs currently exist, not enough is known about their pathways to create a functioning compound, Chandel said.
"The biology of oxidative stress is still a mystery," he said. "CRISPR positive-selection screens could be a way to figure it out.
Reference
- Colleen R Reczek, Kıvanç, Birsoy, Hyewon Kong, Inmaculada Martínez-Reyes, Tim Wang, Peng Gao, David M Sabatini, Navdeep S Chandel. A CRISPR screen identifies a pathway required for paraquat-induced cell death, Nature Chemical Biology (2017).DOI:10.1038/nchembio.2499
Source-Eurekalert