Macular Telangiectasia type 2 is a degenerative eye disease which leads to blindness and is currently incurable and untreatable.
Highlights
- MacTel is a rare and complex disease that mainly affects people from the age of 40 onwards.
- The disease causes abnormal growth of blood vessels in the macula -- located in the middle of the retina.
- Five key regions or loci in the genome most likely to influence a person's risk of developing MacTel.
- People with the MacTel genetic risk loci identified in the study had changes in their metabolism, specifically in their glycine and serine levels.
Macular Telangiectasia type 2
MacTel is a rare and complex disease that mainly affects people from the age of 40 onwards. The disease causes abnormal growth of blood vessels in the macula -- located in the middle of the retina. Patients experience a loss of central vision crucial for tasks requiring focus, such as driving or reading, with no treatment available to stop progression of the disease.
Study Details
Professor Bahlo said the study involved detailed genetic analysis of MacTel patients from around the world, including Australia, using genome wide association studies (GWAS).
"These five genetic risk loci are our treasure map, telling us where to 'keep digging' in order to discover the specific genes implicated in MacTel," she said.
Metabolic changes in Glycine & Serine
The analysis revealed that people with the MacTel genetic risk loci identified in the study had changes in their metabolism, specifically in their glycine and serine levels. Professor Bahlo said this meant there could be a significant relationship between the level of glycine and serine in the body, and onset of the disease.
"Though the exact link between the disease and glycine and serine is yet to be confirmed, the connection is an exciting clue to help us further explore metabolic abnormalities in people with MacTel," Professor Bahlo said.
Dr Scerri said the team's work highlighted crucial points of interest that, with further investigation, could help researchers find a way to prevent the progression of the disease. "We are continuing to explore the genetic data to try to identify the specific genes involved, and the precise genetic variations that are leading to the disease," Dr Scerri said.
President of the Lowy Medical Research Institute that sponsored the research Professor Martin Friedlander said the work represented a significant advancement in efforts to understand the cause of MacTel. "We are working to develop treatments effective in preserving vision in patients with this disease," he said.
Reference
- Melanie Bahlo et al., World-first genetic clues point to risk of blindness, Nature Genetics (2017).
Source-Medindia