French researchers have unveiled a mechanism that explains how biological clock works in sync with the day and night cycle despite large fluctuations in light intensity during the
Despite considerable fluctuations in light intensity during the day and from day to day, French researchers have unveiled a mechanism that explains how the biological clock works in sync with the day and night cycle. Following the identification of two central 'clock genes' of a green alga, Ostreococcus tauri, a mathematical model reproducing their daily activity profiles has revealed that their internal clock is influenced by the naturally varying light levels throughout the day only at periods when it needs resetting.
Exact synchronization to the day/night cycle requires that some clock components sense daylight.
Ostreococcus has evolved a simple but effective strategy to shield the circadian clock from interference caused by fluctuations in the levels of daylight by limiting sensitivity to light to specific times of day.
In the authors' model, this ability is furthermore inactivated when the clock is in phase with the day/night cycle but resets the clock when it is out of phase. Such a clock architecture is immune to strong daylight fluctuation such as due to cloud cover.
Light sensing could be activated only when the core oscillator controlling the biological clock is blind to perturbations and variations. As anyone who has pushed a swing knows, the response of a periodic motion to a perturbation depends indeed very much on the timing; pushing a swing mid-arc doesn't achieve much.
With this simple trick, the clock is insensitive to light and its fluctuations when it is on time.
Advertisement
The results were published in the journal PLoS Computational Biology.
Advertisement