Researchers have explained how certain drugs could reduce nausea and vomiting caused by cancer chemotherapy agents through the structure of receptor on which drugs act.

‘Various side effects of chemotherapy are related to the overstimulation of receptor. Drug compounds targeting the receptor could solve this.’
Read More..

During chemotherapy, this receptor is greatly overstimulated. The same receptor also plays a central role in many other medical problems - such as migraine, perception of pain and pruritus (severe itching).Read More..





Ever since the receptor was discovered thirty years ago, teams around the world have worked on finding effective and lasting inhibitors. Until now, though, success was limited: While many compounds showed strong activity in the test tube, only very few of them worked in patients. There was no clear explanation as to why this was the case.
Three-dimensional analysis of the structures explains how they work
A team of researchers at the UZH Department of Biochemistry, led by Prof. Andreas Plueckthun, has now managed to solve this mystery. They examined what the three-dimensional structure of the receptor looked like when two effective drugs - EmendTM; (aprepitant) und AkynzeoTM; (netupitant) - were used.
They compared this with the use of an early compound that was only active in the test tube. "We could directly see how the effective drugs altered some parts of the receptor such that the drugs could not easily escape anymore," explains PhD candidate Jendrik Schoeppe, who carried out the structural analyses. "The earlier compound fit just as well onto the receptor but could still quickly leave it."
Advertisement
This study helped the biochemists to exactly determine which chemical structures of the drugs enable a long-lasting attachment to the receptor and thus a durable effect.
Advertisement
A better understanding of the long-term effects
The researchers believe that their findings may also be useful in the search for compounds that could be effective on other receptors. The direct comparison of the different drugs binding to the same receptor also gives important clues about what general features define a long-acting clinically successful drug.
"We could only find this out because we could directly see the structure in such high detail, and this in turn only became possible through the directed evolution and protein engineering methods we have developed over the last few years," explains Andreas Plueckthun. "This was a long-term investment that paid off."
Source-Eurekalert