A team of scientists have now found how double stranded RNA, such as viral genetic information, is prevented from entering the nucleus of a cell.
A team of scientists have now found how double stranded RNA, such as viral genetic information, is prevented from entering the nucleus of a cell. During the immune response against viral infection, the protein ADAR1 moves from the cell nucleus into the surrounding cytoplasm. There it modifies viral RNA to inhibit reproduction of the virus. But how is the human genome protected from inadvertent import of viral RNA into the nucleus? The current study of the research teams from Vienna and Zurich, published in PNAS Plus, sheds the first light on this question. The human immune system: defense against germs
We are constantly exposed to bacteria and viruses. Luckily our body has developed a set of mechanisms – the immune system – to fend off and fight such attacks. Viruses are small particles that cannot survive outside of a host cell. Upon entering the body they release their genetic material into our cells in order to reproduce. This is one of the points where the body's immune system attacks: enzymes chemically modify the viral genetic information in a manner that renders it useless for the production of new virus particles.
Source-Eurekalert