A team of molecular scientists have identified that star ascidians, known as sea squirts have pacemaker cells similar to that of human heart.
A team of molecular scientists have identified that star ascidians, known as sea squirts have pacemaker cells similar to that of human heart. This finding offers new insights into the evolutionary process of human heart. The research may offer a new insight into the early evolution of the heart, as star ascidians are one of the closest related invertebrates to mammals.
The research team, led by Annette Hellbach from the Max Planck Institute of Biochemistry in Germany, expected to find clusters of HCN cells, the markers for pacemakers, at either end of the Botryllus schlosseri ascidian heart.
"The Botryllus schlosseri heart beats from one end to the other, stops for a short while and then starts to beat in the other direction," Hellbach said.
"It would make sense to have two pacemakers on both ends from which the heartbeat is initiated, however, we found several HCN positive cells spread along the cardiac tube," she said.
The team interpreted this finding as an evolutionary precursor to the elaborate cardiac conduction system found in mammals, which are made up of clusters of pacemaker cells located in defined spots.
The team found that in comparison the cells in the B. schlosseri heart appeared to be randomly distributed along the heart; however, as with mammals the HCN cells played a vital role in generating the heartbeat.
Advertisement
"Our study reveals that the presence of HCN channels and their role in generating the heartbeat is shared between B. schlosseri and mammals," Hellbach said.
Advertisement
The study has been published in the JEZ A: Ecological Genetics and Physiology.
Source-ANI