Converting human skin cells directly into a specific type of brain cell that is affected by Huntington's disease is possible with a new way described by scientists.
Converting human skin cells directly into a specific type of brain cell that is affected by Huntington's disease, is possible with a new way described by scientists. Huntington's disease is an ultimately fatal neurodegenerative disorder. Unlike other techniques that turn one cell type into another, this new process does not pass through a stem cell phase, avoiding the production of multiple cell types, the study's authors report. The researchers, at Washington University School of Medicine in St. Louis, demonstrated that these converted cells survived at least six months after injection into the brains of mice and behaved similarly to native cells in the brain.
"Not only did these transplanted cells survive in the mouse brain, they showed functional properties similar to those of native cells," said senior author Andrew S. Yoo, PhD, assistant professor of developmental biology. "These cells are known to extend projections into certain brain regions. And we found the human transplanted cells also connected to these distant targets in the mouse brain. That's a landmark point about this paper."
The work appears Oct. 22 in the journal Neuron.
The investigators produced a specific type of brain cell called medium spiny neurons, which are important for controlling movement. They are the primary cells affected in Huntington's disease, an inherited genetic disorder that causes involuntary muscle movements and cognitive decline usually beginning in middle-adulthood. Patients with the condition live about 20 years following the onset of symptoms, which steadily worsen over time.
The research involved adult human skin cells, rather than more commonly studied mouse cells or even human cells at an earlier stage of development. In regard to potential future therapies, the ability to convert adult human cells presents the possibility of using a patient's own skin cells, which are easily accessible and won't be rejected by the immune system.
To reprogram these cells, Yoo and his colleagues put the skin cells in an environment that closely mimics the environment of brain cells. They knew from past work that exposure to two small molecules of RNA, a close chemical cousin of DNA, could turn skin cells into a mix of different types of neurons.
Advertisement
Knowing exposure to these microRNAs alone could change skin cells into a mix of neurons, the researchers then started to fine tune the chemical signals, exposing the cells to additional molecules called transcription factors that they knew were present in the part of the brain where medium spiny neurons are common.
Advertisement
Yoo also explained that the microRNAs, but not the transcription factors, are important components for the general reprogramming of human skin cells directly to neurons. His team, including co-first author Michelle C. Richner, senior research technician, showed that when the skin cells were exposed to the transcription factors alone, without the microRNAs, the conversion into neurons wasn't successful.
Source-Eurekalert