Oregon Health & Science University study challenges current understanding of hypoxia's impact on the developing brain, presents possibility for repair and restoration.
Hypoxia or low oxygen supply for 30 minutes is enough to disrupt the structure, function and growth of a brain region named hippocampus, which is important for learning and memory. But, brain cells do not die as previously believed, according to a research published in the Journal of Neuroscience. Hippocampal cells fail to mature normally, causing a reduction in long-term potentiation, or the cellular basis of how the brain learns.
‘Analyzing how hippocampus responds to a lack of oxygen, could pave the way for new mechanisms of care and intervention at hospital, and at home.’
Read More..
Nearly 15 million babies are born prematurely, or before 37 weeks of pregnancy, around the world each year. When born too early, a baby's immature respiratory center in the brain often fails to signal it to breathe, resulting in low oxygen levels, or hypoxia, in the brain. Read More..
"Our findings raise new concerns about the vulnerability of the preterm brain to hypoxia. They are concerning for the long-term impact that oxygen deprivation can have on the ability of these preterm babies to learn as they grow to school age and adulthood," said the study's principal investigator, Stephen Back, M.D., Ph.D., Clyde and Elda Munson Professor of Pediatric Research and Pediatrics, OHSU School of Medicine, OHSU Doernbecher Children's Hospital.
In the neonatal intensive care unit, preemies can experience up to 600 short, but impactful periods of hypoxia each week. Consequently, more than one-third of babies who survive preterm birth are likely to have smaller brains, presumably due to brain cell loss, compared with the brains of full-term infants. This can increase the risk of significant life-long neurodevelopmental challenges that will affect learning, memory, attention and behavior.
Using a twin preterm fetal sheep model, Back and colleagues studied the impact of both hypoxia alone, as well as in combination with ischemia -- or insufficient blood flow -- on the developing hippocampus.
Remarkably, the severity of the hypoxia predicted the degree to which cells in the hippocampus failed to mature normally, explains Back. These findings are all the more unexpected because it was not appreciated that the preterm hippocampus was already capable of these learning processes.
Advertisement
Source-Eurekalert