Key areas of the brain, the hippocampus, were boosted with a 'trophic effect' (nutritional effect)by human umbilical cord blood cells (HUCBs).
Key areas of the brain, the hippocampus, were boosted with a 'trophic effect' (nutritional effect)by human umbilical cord blood cells (HUCBs). These studies examined the activity of human umbilical cord blood cells (HUCB) on hippocampal neurons harvested from both young and old laboratory animals which were experimental models of central nervous system aging, injury and disease.
"As we age, cognitive function tends to decline," said Alison E. Willing, a professor in the University of South Florida's (USF) Department of Neurosurgery and Brain repair and lead author for the study.
"Changes in cognitive function are accompanied by changes in the hippocampus, an area of the brain where long term memory, as well as other functions, are located, an area of the brain among those first to suffer the effects of diseases such as Alzheimer's disease."
According to Willing and her USF co-authors, these changes contribute to stroke and dementia in the aging population when neural cells become more susceptible to stressors and disease processes. Because HUCB cells have received attention as an alternative source of stem cells that have been studied and shown to be effective with wide therapeutic potentials, how the cells might be used to repair the diseased, as well as normally aging brain, has become an important question.
"It is important to understand how these cells may be manipulated to support hippocampal function in order to develop new therapies," she explained.
"Accordingly, this study sought to examine the potential for HUCBs to enhance proliferation and increase survival of hippocampal cells derived from aging adult rat brains."
Advertisement
"These protective effects may be a function of growth factors and cytokines (a small signaling protein linked to the inflammatory response) produced by the HUCB cells," observed Dr. Willing.
Advertisement
They concluded that HUCB cells benefit aging adult hippocampal neurons by 'increasing their survival, growth, differentiation, maturation and arborization' (branching).
"The mechanisms by which HUCB cells extend the life of hippocampal cells may include enhancing the proliferative capacity of the cells or protecting existing and newly generated neurons from damage and death," concluded Willing.
The study has been published in the current issue of Aging and Disease.
Source-ANI