The protease cathepsin B (CatB) has been verified by researchers as a target to develop memory deficits and shrinking the pathology of Alzheimer's disease (AD), leastways in an animal model.
The protease cathepsin B (CatB) has been verified by researchers as a target to develop memory deficits and shrinking the pathology of Alzheimer's disease (AD), leastways in an animal model. The breakthrough study was conducted jointly by researchers at the University of California, San Diego, the Medical University of South Carolina, the University of Cincinnati and American Life Science Pharmaceuticals of San Diego.
According to investigator Vivian Y. H. Hook, PhD, professor of the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences and professor of neurosciences, pharmacology and medicine at the UCSD School of Medicine, the study is important because it could lead to new therapeutics that improve the memory deficits of AD.
Abnormal accumulation of brain amyloid-beta peptides is thought to cause the memory loss and amyloid plaque pathology of AD.
Amyloid-beta peptides are "cut" out from a larger protein called the amyloid precursor protein (APP) by an enzymatic "scissor" called Beta-secretase, and aggregate to form plaques in the brain regions responsible for memory.
Inhibiting the beta -secretase "scissors" from "cutting" the APP with a drug would reduce brain amyloid-beta levels and thereby improve memory deficits and reduce amyloid plaque pathology.
The vast majority of AD patients have wild-type (WT) beta-secretase activity and thus the WT beta -secretase has been a target of great interest for a long time.
Advertisement
However, deleting the BACE1 gene was reported to make memory deficits worse in a transgenic model having WT beta-secretase activity.
Advertisement
In the current paper, the researchers show that CatB is such a target because deleting that gene in a transgenic mouse model having WT beta -secretase activity improves memory deficits and reduces amyloid plaque, which develop in this model, mimicking that found in AD.
In contrast, deleting the BACE1 gene in that transgenic model had no effect on memory deficits or pathology.
The study has been published in the online edition of the Journal of Alzheimer's Disease.
Source-ANI