Researchers in Melbourne claim that they have managed to solve the puzzle of how the production of the blood clotting cells known as platelets is stimulated.
Researchers in Melbourne claim that they have managed to solve the puzzle of how the production of the blood clotting cells known as platelets is stimulated by an essential blood-making hormone. Platelets are essential for stopping bleeding and are produced by small fragments breaking off their 'parent' cells, called megakaryocytes.
The discovery, made by scientists at the Walter and Eliza Hall Institute, identified how bone marrow cells could become overstimulated and produce too many platelets. In blood diseases such as essential thrombocythemia, too many platelets can lead to clogging of the blood vessels, causing clots, heart attack or strokes.
Institute researchers Dr Ashley Ng, Dr Maria Kauppi, Professor Warren Alexander, Professor Don Metcalf and colleagues led the research, published today in the journal Proceedings of the National Academy of Sciences.
Dr Ng said the hormone thrombopoietin was responsible for signalling bone marrow cells to produce platelets but, until now, researchers did not know precisely which cells responded to its signals. By studying the receptor for thrombopoietin, called Mpl, on blood cells in the bone marrow, the team pinpointed the cells involved in making platelets after thrombopoietin stimulation, and made an unexpected discovery.
"Thrombopoietin did not directly stimulate the platelet's 'parent' cells, the megakaryocytes, to make more platelets," Dr Ng said. "Thrombopoietin signals actually acted on stem cells and progenitor cells, several generations back."
To reach this conclusion, the researchers genetically removed the Mpl receptors from megakaryocytes and platelets. Dr Ng said the result was very surprising. "The progenitor and stem cells in the bone marrow began massively expanding and effectively turned the bone marrow into a megakaryocyte-making machine," Dr Ng said.
Advertisement
The findings may have implications for human disease, Dr Ng said. "We know people with myeloproliferative disorders, such as essential thrombocythemia, produce too many megakaryocytes and platelets," he said.
Advertisement
"We think this study now provides a comprehensive model of how thrombopoietin controls platelet production, and perhaps gives some insight into the biology and mechanism behind specific myeloproliferative disorders," Dr Ng said.
Source-Eurekalert