Identical brain mechanisms are responsible for triggering memory in both sleep and wakefulness, stated study.
Research conducted by the University of Birmingham scientists sheds light on the processes used by the brain to 'reactivate' memories during sleep, consolidating them so they can be retrieved later. The findings of the study are published in Cell //Reports. Although the importance of sleep in stabilising memories is a well-established concept, the neural mechanisms underlying this are still poorly understood.
‘Distinctive neural patterns in the brain which are triggered when remembering specific memories while awake, reappear during subsequent sleep.’
The findings provide further evidence of the beneficial effects of sleep on memory formation.
Gaining a more sophisticated understanding of these mechanisms also enhances our understanding of how memories are formed. This could ultimately help scientists unravel the foundations of memory disorders such as Alzheimer's and lead to the development of memory boosting interventions.
Working in partnership with researchers at the Donders Institute, in Holland, the team used a technique called Targeted Memory Reactivation, which is known to enhance memory. In the experiment, previously learned information - in this case foreign vocabulary - is played back to a person while asleep.
Using electroencephalography, the brain signals of the study participants were recorded while learning and remembering the foreign vocabulary before sleep.
Subsequently, the researchers recorded the distinct neural pathways activated as the sleeping volunteers' brains reacted to hearing the words they had learned.
Comparing neural signals fired by the brain in each state, the researchers were able to show clear similarities in brain activity.
Advertisement
"If we can better understand how memory really works, this could lead to new approaches for the treatment of memory disorders, such as Alzheimer's disease."
Advertisement
The team are planning a follow-on study, devising ways to investigate spontaneous memory activation during sleep. Using advanced machine learning techniques, the researchers can record and interpret neural patterns in the brain, identifying where memories are activated without the need for an external prompt.
Source-Eurekalert