Chromosomally normal embryos with a good morphological appearance, have no ability to produce a baby if they have high levels of mitochondrial DNA.
A new approach to embryo assessment done before an implant in invitro-fertilization may be able to shed light on why so many apparently healthy embryos are not viable. The approach is based on the quantification of mitochondrial DNA found in the outermost layer of cells in a five-day old embryo. The combination of chromosome analysis and mitochondrial assessment may now represent the most accurate and predictive measure of embryo viability with great potential for improving IVF outcome.
‘Chromosomal anomalies - or aneuploidy - are universally accepted as the main reason for miscarriage and the main cause of implantation failure.’
Following the presentation of these important results here in Helsinki, first author Dr Epida Fragouli from Reprogenetics UK and the University of Oxford's Nuffield Department of Obstetrics and Gynaecology in Oxford, UK, said the study "demonstrates that mitochondrial DNA levels are highly predictive of an embryo's implantation potential".Even embryos which are chromosomally normal and have a good morphological appearance under the microscope, she added, have virtually no ability to produce a baby if they have unusually high levels of mitochondrial DNA.
The evidence for mitochondrial DNA as an accurate marker of embryo viability came in a prospective study of 280 blastocysts (embryos cultured for five or six days) and tested to be chromosomally normal. The study was the first ever evaluation of the predictive power of mitochondrial DNA quantification with a prospective, blinded, non-selection design.
This meant that the mitochondrial DNA levels of the blastocysts were not known at the time of transfer, so study results relied solely on a comparison of IVF outcome and mitochondrial DNA level, and were not subject to any bias.
Of the 111 single blastocyst transfers whose outcome was so far known, 78 (70%) led to ongoing pregnancies, and every single one of them (100%) had levels of mitochondrial DNA known to be normal.
Advertisement
"The results confirm that embryos with elevated levels of mitochondrial DNA rarely implant," she added, "and support the use of mitochondrial quantification as a marker of embryo viability."
Advertisement
Dr Fragouli explained that mitochondrial DNA levels can be simply and quickly measured by a polymerase chain reaction (PCR) strategy, but next generation sequencing (NGS) can also be used. She also emphasised that all embryos must first be screened for aneuploidy and that the mitochondrial DNA test is only applicable to chromosomally normal embryos.
"Aneuploidy is still the biggest cause of embryo implantation failure," she explained, "so mitochondrial analysis does not replace that. It is the combination of the two methods - mitochondrial DNA testing and chromosome analysis - that are so powerful."
Mitochondrial DNA testing would add around £200 to the cost of aneuploidy screening. However, her group is working on an approach which would assess chromosome content and mitochondrial DNA simultaneously. "Once these are ready for application," she said, "there would be no extra cost added."
The group has started offering mitochondrial DNA quantification clinically in the USA, and has applied to the HFEA for a license for use in the UK.
Source-Eurekalert