A neurophonetics researcher at Purdue University has found that more of the brain is busy processing pitch from language and other sounds than previously thought.
A neurophonetics researcher at Purdue University has found that more of the brain is busy processing pitch from language and other sounds than previously thought.
Linguistics professor Jackson T. Gandour, revealed the finding while presenting information from several of his pitch processing studies at the Feb. 16 "Brain Basis of Speech" session during the American Association for Advancement of Science's annual meeting."By studying brain activity at different stages of processing pitch patterns in tonal languages, we have found that early activity in the brainstem is shaped by a person's language experience, even while the person is asleep, and consequently, we now believe it plays a much greater role in speech perception that we thought before. Everyone has a brainstem, but it's tuned differently depending on what sounds are behaviorally relevant to a person, for example, the sounds of his or her mother tongue," said Gandour.
The location of the brain stem is quite early along the auditory pathway, about 7-9 milliseconds from the time the auditory signal enters the ear. This is near where pitch processing begins in the cochlea and the auditory nerve, about 0-2 milliseconds.
"We now know that there are regions of the brain involved in processing the sounds of language that we didn't know about before. We know even less about how pitch information is analyzed, transformed and represented at different levels of the brain in the translation from sound to meaning. A fuller understanding will give us a better idea what roles the brain regions are playing, and this information could help people with communication disorders or brain injuries," he said.
In collaboration with Purdue auditory electrophysiologist Ananthanarayan Ravi Krishnan on the brainstem studies, Gandour compared electrical activity in young adult speakers of the tonal language Mandarin with those of speakers of English, a non-tonal language.
Most of the world languages are tone languages. They use inflections of pitch on syllables to indicate a difference between words. For example, in Mandarin the sound "ma" with a level tone means "mother," a rising tone means "hemp," a falling-rising tone means "horse" and a falling tone means "scold."
Advertisement
He applied the functional brain imaging techniques positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to display blood flow activity at the level of the cerebral cortex, in collaboration with Purdue biomedical engineer Thomas Talavage as well as colleagues at the Indiana University Medical Center.
Advertisement
"And moreover, we find that these networks are not circumscribed to language processes, but instead interact with more general sensory-motor and cognitive process in addition to those associated with language," he said.
The researchers have shown that when the melody of speech is processed there is a dynamic interplay between the left and right hemispheres of the brain. Gandour said that the processing pitch of information engages neural mechanisms in the brain's right hemisphere, while left hemisphere regions mediate processing of linguistic information.
He compared the evolution of his research program on brain and language to that of someone trying to figure out the structure and function of different parts of a house.
In the attic window view, it shows theories about elements, rules and representations of language, minus the brain. Moving down to the second floor offers the first look at the neurobiology of language. Scientists on this floor assess deficits in patients' language abilities that result from damage to one or the other side of the brain to determine what areas are necessary for normal language functioning.
"While the windows on the second floor are important, it's only when we get to the first floor that we begin to see actual brain activityBy using brain imaging techniques, we can view activity in both hemispheres simultaneously while subjects are performing language tasks, telling us what areas on either side of the brain participate in language functions in the normal human brain," said Gandour.
He added: "That leaves the cellar, and what do you find in the cellar" In a house, it's fine wine. In a human, it's the midbrain. That's where we tune our fine tones. And just as fine wines take time, so too does it take time for our brain to construct fine tones."
Source-ANI
SRM/M