Engineers of Johns Hopkins claims to have invented a motor without metal or electricity that can be used to perform cancer biopsies and therapies guided by MRI.
Engineers of Johns Hopkins claims to have invented a motor without metal or electricity that can be used to perform cancer biopsies and therapies guided by magnetic resonance imaging.
The motor that drives the devices can be so precisely controlled by computer that movements are steadier and more precise than a human hand."Lots of biopsies on organs such as the prostate are currently performed blind because the tumors are typically invisible to the imaging tools commonly used," says Dan Stoianovici, Ph.D., an associate professor of urology at Johns Hopkins and director of the robotics lab. "Our new MRI-safe motor and robot can target the tumors. This should increase accuracy in locating and collecting tissue samples, reduce diagnostic errors and also improve therapy."
A description of the new motor, made entirely out of plastics, ceramics and rubber, and driven by light and air, was published in the February issue of the IEEE/ASME Transactions on Mechanotronics.
The challenge for his engineering team was to overcome MRI’s dependence on strong magnetic interference. Metals are unsafe in MRIs because the machine relies on a strong magnet, and electric currents distort MR images, says Stoianovici. The team used six of the motors to power the first-ever MRI-compatible robot to access the prostate gland. The robot currently is undergoing preclinical testing.
"Prostate cancer is tricky because it only can be seen under MRI, and in early stages it can be quite small and easy to miss," says Stoianovici.
The new Johns Hopkins motor, dubbed PneuStep, consists of three pistons connected to a series of gears. The gears are turned by air flow, which is in turn controlled by a computer located in a room adjacent to the MRI machine. "We’re able to achieve precise and smooth motion of the motor as fine as 50 micrometers, finer than a human hair," says Stoianovici.
Advertisement
"The robot moves slowly but precisely, and our experiments show that the needle always comes within a millimeter of the target," says Stoianovici. This type of precision control will allow physicians to use instruments in ways that currently are not possible, he says.
Advertisement
Source-Eurekalert
SRM/B